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Abstract 

 

The metalog distributions constitute a new system of continuous univariate probability distributions 

designed for flexibility, simplicity, and ease/speed of use in practice.  The system is comprised of 

unbounded, semi-bounded, and bounded distributions, each of which offers nearly unlimited shape 

flexibility compared to Pearson, Johnson, and other traditional systems of distributions. Explicit shape-

flexibility comparisons are provided. Unlike other distributions that require non-linear optimization for 

parameter estimation, the metalog quantile functions and PDFs have simple closed-form expressions that 

are quantile-parameterized linearly by CDF data.  Applications in fish biology and hydrology show how 

metalogs may aid data and distribution research by imposing fewer shape constraints than other commonly 

used distributions. Applications in decision analysis show how the metalog system can be specified with 

three assessed quantiles, how it facilities Monte Carlo simulation, and how applying it aided an actual 

decision that would have been made wrongly based on commonly-used discrete methods. 

 

1. Introduction 

 

In economics, business, engineering, science and other fields, continuous uncertainties frequently arise that 

are not easily- or well-characterized by previously-named continuous probability distributions.  Frequently, 

there is data available from measurements, assessments, derivations, simulations or other sources that 

characterize the range of an uncertainty.  But the underlying process that generated this data is either 

unknown or fails to lend itself to convenient derivation of equations that appropriately characterize the 

probability density (PDF), cumulative (CDF) or quantile distribution functions.  

 

Desiring a continuous probability distribution but lacking appropriate functional forms, some analysts have 

attempted to “fit” their data to previously-named distributions, often with less-than-satisfactory results.  

For example, one may attempt to derive the parameters of a normal distribution from a given set of CDF 

data, but the resulting normal distribution will never be a satisfactory representation if the data itself is 

indicative of a skewed or bounded distribution, of which the normal is neither.  While fitting the same data 

set to the parameters of a beta distribution may yield a beta distribution with appropriate skewness, the 

resulting beta distribution may not be satisfactory if the data itself is representative of an unbounded or 

semi-bounded distribution, which the beta is not.  Moreover, such fitting involves considerable effort and 

complexity since such probability distributions are often non-linear in their parameters, lack a closed-form 

expression, or both. 

 

Moreover, among a set of previously-named distribution that have bounds that match natural bounds of 

the data, it may be unclear which of many distributions to select.  The choice of distribution can be 
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important because it inherently imposes shape constraints that may or may not appropriately represent 

the data and the process that generated it.  In such cases, one needs a distribution that has flexibility far 

beyond that of traditional distributions -- one that enables “the data to speak for itself” in contrast to 

imposing unexamined and possibly inappropriate shape constraints on that data.  While this need applies 

to a wide range of empirically generated frequency data, it can be especially acute when a probability 

distribution is used to represent state-of-information (or belief-based) data as is common in decision 

analysis and in an increasingly wide range of other modern applications of probability. 

 

When there are many continuous uncertainties with very different characteristics to represent, as is often 

the case in decision analysis, it may be simply impractical to attempt to find a continuous representation 

tailored to each uncertainty using traditional methods.  So decision analysts often resort to using discrete 

(e.g. three branch) representations.  These have multiple shortcomings including that they artificially cut off 

the tails and introduce undue lumpiness into the analysis. 

 

Desiring a continuous probability distribution but lacking appropriate functional forms, other analysts have 

resorted to sorting their data into buckets to develop histograms, which have the advantage of being able 

to represent the shape and location of most any continuous uncertainty.  However, histogram development 

also involves effort and complexity, often includes an arbitrary choice of bucket limits, and inherently 

results in a lumpy stair-step display rather than a smooth PDF.  Maximum entropy methods (Abbas 2003), 

which strive to add no information beyond the data, similarly result in either a stair-step or piecewise linear 

PDF.  When knowledge of smoothness is present in addition to the data, such formulations are less than 

ideal. 

 

For applications that require probabilistic (Monte Carlo) simulation, the situation of having data but not 

continuous distribution functions is even more challenging and complicated.  Sampling directly from the 

data itself (discrete sampling) is not satisfactory if one believes there are gaps, lack of sufficient tail 

representation, or other shortcomings in the data.  Sampling from bucketed data (histograms) requires 

programming of the buckets and is inherently lumpy.  Moreover, even if an appropriate continuous 

distribution has been identified (e.g. by a data “fit” to its parameters), most continuous CDF’s cannot be 

solved analytically for their inverse-CDF (quantile function), which is required for simulation.  So look-up 

tables or non-linear programming must be employed for each sample.  

 

The metalog family of distributions can solve all these problems, and it has been proven effective and easy 

to use in practice.  The metalog distributions can effectively represent a wide range of continuous 

probability distributions -- whether skewed or symmetric, bounded, semi-bounded, or unbounded.  Scaling 

constants that determine its shape and location are uniquely determined by a convenient linear 

transformation of CDF data. In contrast to other continuous distributions, there is no need for non-linear 

optimization to fit parameters to the data.  In addition, the metalog's simple, algebraic closed forms are 

easy to program, making it easy to replace lumpy, stair-step, or piecewise linear PDF displays with smooth, 

continuous ones.  
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For simulation applications, the metalog distributions enable the calculation of a sample from a uniformly 

distributed random number according to a simple, algebraic equation, thereby displacing any need to use a 

look-up tables or non-linear optimization for the calculation of each sample.  Moreover, over a wide range 

of applications, the results of the simulation can be conveniently and accurately represented by a metalog, 

compressing what may otherwise require thousands of data points into a simple closed-form distributional 

representation. 

 

For direct probability assessments in decision analysis and other Bayesian applications, the metalog 

distributions provide a convenient way to translate CDF data into smooth, continuous, closed-from 

distribution functions that can be used for real-time feedback to experts about the implications of their 

probability assessments -- free from the confines of other continuous distributions that have more limited 

flexibility. In practice, we have found that the resulting metalog often yields a more accurate and authentic 

representation of expert beliefs than the data itself.  

 

The unbounded metalog distribution is a Quantile-Parameterized Distribution (QPD), (Keelin and Powley, 

2011), and might be regarded as an easier-to-use and more-broadly –applicable successor to the Simple Q 

Normal distribution introduced in that paper.  Like the Simple Q Normal, the metalog distribution can 

effectively represent a wide range of unbounded continuous probability distributions.  The metalog, 

however, has several advantages:  an unlimited number of terms rather than just four (enabling more 

flexible distributional representations); closed-form, smooth (continuously differentiable) quantile-function 

and PDF expressions – obviating any need for lookup tables; closed-form analytic expressions for its central 

moments; and closed-form analytic transforms that conveniently express probability distributions that are 

semi-bounded or bounded – while retaining the unbounded metalog’s flexibility, smoothness, and ease-of-

parameterization properties. 

 

The remainder of this paper is organized as follows.  Section 2 provides overview of the strengths and 

weaknesses of existing families of flexible distributions, desiderata and engineering methods for developing 

new flexible distributions, and how these methods have been applied previously.  Section 3 applies a novel 

combination of these methods to develop the unbounded metalog distribution, and shows how its 

flexibility compares with corresponding distributions from previous distribution families, including those of 

Pearson and Johnson.  Section 4 shows how the flexibility of unbounded the metalog along with its linear 

quantile-parameterization can be propagated into the domain of semi-bounded and bounded distributions.  

The flexibility of these semi-bounded and bounded metalogs is analyzed and compared with corresponding 

Pearson and Johnson distributions, among others. Section 5 further illustrates the flexibility of the metalog 

distributions by showing how well they approximate a wide range of existing distributions.  Section 6 

presents applications.  Applications in fish biology and hydrology show how metalogs may aid data and 

distribution research by imposing fewer shape constraints than other commonly used distributions.  

Applications in decision analysis show how the metalog system can be specified with three assessed 

quantiles, how it facilities Monte Carlo simulation, and how applying it aided an actual decision that would 

have been made wrongly based on commonly-used discrete methods. At the end of Section 6, we provide 
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guidelines for distribution selection within the metalog system, using the previous applications as 

examples.  Section 7 offers conclusions and suggested directions for future research. 

 

2. Literature Review and Motivation 

 

2.1 Types of Probability Distributions 

 

For context, we divide probability distributions into three types -- Type I, Type II and Type III. Type I 

distributions can be derived from an underlying probability model, from which they gain much of their 

appeal and legitimacy. For example, the normal distribution was originally derived as a limiting case of the 

previously-known binomial distribution (De Moivre, 1756) and is also the limiting shape for various central 

limit theorems. Similarly, the exponential distribution can be derived as the probability distribution of 

waiting times between events governed by a Poisson process. The shape of a Type I distribution is 

determined largely or entirely by its underlying probability model. For example, the normal distribution has 

one location parameter µ and one scale parameter σ, but no shape parameters. The exponential 

distribution has a single scale parameter λ, but no shape parameters. Such shape restrictions make Type I 

distributions an excellent choice for practical use whenever the situation fits the probability model, and 

especially so when empirical data that would otherwise characterize the distribution are sparse or 

unreliable. 

 

Type II probability distributions gain their appeal and legitimacy less from an underlying probability model 

and more from their ability to represent specific probabilistic data or processes that are not known to 

correspond to an existing Type I model.  Most commonly they are “generalizations” of other previously 

identified distributions, formed by adding one or more parameters that enable a good fit to the specific (ad 

hoc) data under consideration. For example, Mead (1965) generalized the logit-normal distribution 

(proposed previously by Johnson, 1949) by adding a parameter that provides flexibility to fit an empirical 

distribution of carrot-root diameters. Theodossiou (1994) developed skewed version of a generalized 

student-t distribution on the basis that it provided a better representation of financial data (e.g. log daily 

returns of market-traded stocks) than previously available distributions. Theodossiou’s distribution is itself 

a generalization of a previously generalized student-t distribution (McDonald and Newey, 1988). By now, 

Type II distributions published in the literature may number in the dozens or hundreds. Johnson, Kotz, and 

Balakrishnan (1994) detail many Type I distributions and Type II generalizations. 

 

Type III distributions gain their appeal and legitimacy from being as broadly applicable as possible. Unlike 

Type II distributions designed to match a specific class or classes of empirical data, Type III distributions 

would ideally match most any set of data.  This ideal includes, but is not limited to, effectively representing 

data consistent with the numerous Type I and Type II distributions.  Moreover, with the success and 

resurgence of the Bayesian revolution (McGrayne, 2011) and the evolution of the theory and practice of 

decision analysis (Howard (1968, 2015), Raiffa (1968), Keeney and Raiffa (1992), Spetzler et. al. 2015,  
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among others), this ideal includes effectively representing Bayesian priors and other state-of-information-

based (or belief-based) distributions over a very wide range of probabilistic data. 

 

2.2 Type III Families of Distributions 

 

Since no single, universally-applicable distribution has yet been found, Type III probability distributions have 

typically been developed as “systems” or “families” distributions. Within a given family, criteria are 

provided to enable practitioners to pick which particular distribution to use and how to estimate its 

parameters from data. The metalog system introduced by this paper is such a family of distributions. 

 

In his book on families of distributions, Ord (1972) lamented that keeping track of “the wide-ranging and 

rapidly-expanding literature (on families of distributions) is probably a hopeless task.” This is even more the 

case now – more than forty years later.  So, for this paper, we shall content ourselves with discussion of a 

few well-known systems of distributions -- specifically, the Pearson (1895, 1901, 1916), Johnson (1949), 

Tadikamalla and Johnson (1982) systems.  We shall also discuss the general family of quantile-

parameterized distributions (QPDs), Keelin and Powley (2011), because the unbounded metalog is one of 

these.  A more complete discussion of Type III systems distributions can be found in Ord (1972) and 

Johnson, Kotz, and Balakrishnan (1994). 

 

2.3 Type III Desiderata:  Flexibility, Simplicity, Ease/Speed of Use 

 

Johnson (1949) identified several criteria for judging the desirability of any Type III system of distributions, 

including his own.  In this view, Type-I considerations are less important than practical-use considerations 

such as flexibility, simplicity, and ease of use. Similar criteria have been adopted and employed 

subsequently by Mead (1965) and Johnson, et. al, (1994), among others. 

  

Flexibility 

 

Flexibility is the ability of the family to represent a wide range of probabilistic data whatever may be its 

source or rationale.  Since any distribution can be easily modified via linear transformation to 

accommodate changes in location and scale, shape flexibility, in contrast to location and scale, is key.  To 

maximize shape flexibility in probability distribution design, one must eschew Type I considerations that 

limit flexibility. However, such Type I considerations may play useful a role for interpreting special cases of a 

more general and flexible distribution. 

 

Flexibility also includes the ability to match natural bounds, if any.  For example, distances, times, volumes, 

and other such variables often have a natural lower bound (zero) and no specific upper bound. Percentages 

of a population or frequencies of occurrence typically have both a lower bound (zero) and an upper bound 

(one).  Other variables, such as bi-directional error measurements or deviations from a point, may be 

naturally unbounded both high and low. 
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 Simplicity 

 

Simplicity refers to the simplicity of functional form of the PDF and CDF and/or quantile function, ease of 

algebraic manipulation, and ease of interpretation. For example, we consider closed-form algebraic 

expressions to be simpler than those that include limits, integrals, statistical functions like Beta and 

Gamma, look-up tables, or implicitly defined functions that require iteration. 

 

 Ease/Speed of Use 

 

Two critical components of ease of use are ease of distribution selection and ease of parameter estimation.  

Absent Type I considerations, the literature provides incomplete guidance for distribution selection.  For 

example, suppose that a practitioner has a specific set of empirical data that she wishes to represent with a 

continuous probability distribution.  She knows this her data has a natural lower bound of zero, no natural 

upper bound, and that it is right-skewed “sort of like a lognormal”.  There are, however, many distributions 

that look “sort of like a lognormal.”  Beyond the lognormal itself, these include the gamma, inverse gamma, 

chi square, log gamma, log Pearson Type III, log logistic, Burr, Rayleigh, and Weibull, among others.  Which 

should she choose?   

 

Once she has selected a potentially suitable distribution, she cannot know whether she has a good fit until 

she estimates the parameters of that distribution from her data and views the result. While many good 

parameter-estimation methods are available, there is no one method that is generally applicable and easy 

to use in all cases.  In most cases, such methods need to be tailored to the particular mathematical form of 

the distribution under consideration and, even then, may require a non-trivial multi-variable non-linear 

optimization that can be solved only by iteration within distribution-specific constraints1.  For this reason, a 

large literature has evolved to address distribution-specific parameter estimation2.  

 

Today’s Requirements 

 

Beyond ease of distribution selection and parameter estimation, ease of use depends on purpose and 

context.  At the time of Johnson’s 1949 paper, before the advent of modern computers, ease of use 

included having readily available distribution tables, as had been published for the normal.  Today this is 

much different. An easy-to-use family of distributions should be easy to program (or already be pre-

programmed) within the most widely used analytic processing and charting environment3.  Once 

programmed, it should be fast to input data, fast and easy to estimate parameters, fast to calculate, and 

fast to produce interpretable results.  

 

                                                
1 See, for example, Thessidiou (1994) 
2 Johnson, et. al., (1994), Volumes 1 and 2, provide an excellent summary and extensive literature references for 

parameter estimation for a wide range of distributions. 
3 Today this is Excel. 
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Today, the requirements for flexibility, simplicity, and especially ease/speed-of-use are critical and can 

make the difference between use and non-use in practice. Decades ago, a practitioner might have had days, 

weeks, or months to select an appropriate distribution and to develop an accurate fit to empirical or 

assessed data for that distribution. In contrast, in today’s professional practice of decision analysis, once 

data has been assessed, a practitioner might have an hour or less to devote to developing, programming, 

and estimating parameters for a dozen continuous uncertainties with widely-divergent shape and bounds 

characteristics. Distribution selection and parameter estimation must be fast, seamless, and largely without 

need for manual intervention over a wide range of data.  Moreover, such a practitioner would need to be 

able to make convenient, rapid adjustments to these distributions to incorporate new information or other 

changes in state-of-information-based expert data and/or sensitivity analyses. Once formed, the resulting 

distributions need to be convenient for use in Monte Carlo simulation and ideally without the need for 

look-up tables or iteration.  

 

If any of these desiderata are not met, a decision analyst might well abandon continuous distributions 

altogether in favor of discrete approximations, despite their limitations of artificially cutting off the tails and 

introducing undue lumpiness into the analysis.  This particularly challenging environment with respect to 

flexibility, simplicity, and ease/speed of use motivated our development of the metalog family. 

 

2.4 Engineering Design of Probability Distributions 

 

When designing Type II or Type III probability distributions to best accomplish desiderata as described 

above, one faces a wide range of choices. These are summarized in a strategy table4,5 in Table 1.  The first 

row in each column identifies a key decision and subsequent rows identify specific options that are 

available for that decision.  Table 1 is not meant to cover all possible cases, but rather is intended to be 

illustrative of key choices that have been made by previous researchers and to provide context for 

understanding the metalog family.  It is also intended to provide a point of reference for future researchers 

who wish to develop new probability distributions or systems of distributions. 

 

As shown in this table, when designing Type II or Type III probability distributions, it is common to start with 

a particular form of a particular base distribution, to modify it with a particular method, to develop a 

method to estimate its parameters, and to provide guidance for selection of which distribution to use.  

Commonly-used base distributions include the normal6,7,8, logistic9,10, and student t11,12.  Commonly- 

modified forms -- any of which fully specify a probability distribution -- include the probability density 

                                                
4 Howard and Abbas (2015), pp. 775-776 
5 Spetzler, Winter, and Meyer (2016), pp. 56-59 
6 Edgeworth (1896, 1907) 
7 Pearson (1895, 1905, 1916) 
8 Johnson (1949) 
9 Tadikamalla and Johnson (1982) 
10 Balakrishnan (1992) 
11 McDonald and Newey (1988) 
12 Theodossiou (1994) 
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Table 1. Strategy Table for Engineering Probability Distributions 

 

 
 

Function6,7, cumulative distribution function13, quantile function14,15, and characteristic function16. 

Commonly used modification methods include parameter addition17,18,19, parameter substitution 

(substituting an expression for one or more parameters)7, transformation8,9, 20 , and series expansion6,21.  

Commonly used parameter estimation methods include the method of moments7, method of maximum 

likelihood22, probability-weighted moments23, L-moments24, and quantile-parameterization20,25,.  For 

distribution selection within a family, the traditional method has been to select a distribution capable of 

matching the moments7 of frequency data. But, given sufficient flexibility to match moments, one can also 

select a distribution based on natural bounds or other criteria.   

 

                                                
13 Burr (1942) 
14 Karvanen (2006)  
15 Keelin and Powley (2011) 
16 Ord (1972), pp 26-29. 
17 Mead (1965) 
18 McDonald and Newey (1988) 
19 Theodossiou (1994) 
20 Hadlock and Bickel (2016) 
21 Johnson, Kotz, and Balakrishnan (1994) and Ord (1972) provide perspectives on Gram-Charlier, Edgeworth, and 

other series expansions. 
22 Aldrich (1997) chronicles the development of maximum likelihood by RA Fisher during 1912-1921. 
23 Greenwood, et. al. (1979) 
24 Hosking (1998) 
25 Keelin and Powley (2011) 

normal6,7,8 probability density 
function (PDF)6,7

parameter 
addition17,18,19

method of moments7 match 
moments7

logistic9,10 cumulative 
distribution 

function (CDF)13

parameter 
substitution7

maximum 
likelihood22

match 
bounds

student t11,12 quantile function 
(inverse CDF)14,15

trans-
formation8,9,20

probability-
weighted23- and L-

moments24

…

… characteristic 
function16

series 
expansion6,21

quantile 
parameterization20,25

Base 
Distribution

Form 
Modified

Modification 
Method

Parameter 
Estimation

Distribution 
Selection
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To provide context for the metalog family, we now show how previous researchers developed families of 

Type III distributions by making a coordinated set of choices across the columns of Table 1.  We also cite 

strengths and limitations of these families. 

 

The first family of continuous distributions was developed by Karl Pearson7. In Pearson’s time, more and 

more people, Pearson among them, were recognizing that the normal distribution was not the universal 

“end-all” of continuous probability distributions.  Specifically, it had become increasingly evident that many 

probabilistic data sets, survival data for example, exhibited skewness and kurtosis characteristics that the 

normal distribution could neither explain nor represent.  So Pearson set out to develop a system of 

continuous distributions with variable skewness and kurtosis characteristics.   

 

In terms of Table 1, he selected the normal as his base distribution, the differential equation that 

characterizes the normal density function as the form to modify, and parameter substitution as his 

modification method. Specifically, he substituted a quadratic function of the random variable X for the 

otherwise-constant variance (σ2) in the denominator of this differential equation.  This substitution 

effectively introduced variable skewness and kurtosis parameters into his system. Depending on the values 

of these parameters, Pearson’s generalized-normal-density differential equation has a dozen solutions 

(Ord, 1972).  These include the normal, beta, uniform, exponential, gamma, chi-square, F, student-t, and 

Cauchy distributions, among others.   

 

As shown in Figure 126, Pearson’s system was the first to collectively cover the entire accessible27 space of 

combinations of third and fourth central moments. Zero-flexibility distributions show up as points in this 

diagram.  These include the normal, uniform, logistic, Gumbel, and exponential. The flexibility range of 

triangular distributions is limited to a short line segment as shown.  In contrast, bounded Pearson 

distributions (the beta) are sufficiently flexible to cover the entire accessible area above the Pearson-3 

line28.  Unbounded Pearson distributions (Pearson 4 and student-t) cover the area below the Pearson-5 line.  

Because they are symmetrical, t-distributions with various degrees of freedom (df) show up as points on 

the vertical axis.  The area between the Pearson-3 and -5 lines and inclusive of them, is the flexibility range 

for semi-bounded Pearson distributions (gamma, chi square, F, inverse gamma, and inverse chi square). 

 

So while there is at least one Pearson distribution available for each point in Figure 1, Pearson’s system 

offers zero flexibility for choosing boundedness at a given point.  For example, if a practitioner needs a 

semi-bounded distribution with a combination of skewness and kurtosis that is either above the Pearson 3 

line or below the Pearson 5 line, there is no Pearson distribution that satisfies this need.  Moreover, given a 

                                                
26 Figure 1 is the format traditionally used to display the flexibility of families of continuous distributions. See Ord 

(1972); Johnson (1949); Johnson, Kotz, and Balakrishnan (1994); and Tadikamalla and Johnson (1982), among others. 

The horizontal axis measures skewness in terms of the square of the standardized skewness while the vertical axis is 

standardized kurtosis. This standardization ensures that β1 and β2 are location- and scale-independent.  See Section 

3.4 below for precise definitions. 
27  “accessible” in this context refers to the area below the “upper limit for all distributions” line in Figure 1. 
28 “Pearson 3”, “Pearson 4”, etc. are synonymous with the terms “Pearson Type III”, “Pearson Type IV”, etc. as 

commonly used elsewhere in the literature. 
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particular combination of skewness and kurtosis, the Pearson system has zero flexibility to match higher-

order moments.  This follows from observing that Pearson introduced only two additional parameters into 

the normal distribution.  Finally, Pearson’s skewed unbounded distribution (the Pearson 4) is so difficult to 

use that now, a century later, researchers are still looking for practical ways to do.29 

 

The Johnson (1949) and Tadikamalla and Johnson (1982) families of distributions have similar limitations. In 

terms of Table 1, Johnson (1949) selected the normal as his base distribution and transformed it using log, 

logit, and hyperbolic-sine transformations to produce his “S” family of distributions that, like Pearson’s 

family, covers the entire accessible space of Figure 1.  However, the only semi-bounded distribution within  

that family is the lognormal, which is limited to the lognormal line.  All S distributions above that line are 

bounded, and all below it are unbounded.  Tadikamalla and Johnson’s (1982) “L” family is similar except 

that it takes the logistic in place of the normal as its base distribution.  Semi-bounded distributions within 

the L family are limited to the log-logistic line, while all L distributions above it are bounded and below it 

are unbounded.  Moreover, all distributions within both of these families have two or fewer shape 

parameters, implying that, like Pearson’s family, these later families have no flexibility to match higher 

order moments. 

 

Other noteworthy families of distributions are based on series expansion. Best known are the Edgeworth 

and Gram-Charlier series-expansions of the normal density function. While in theory these expansions have 

flexibility to match higher order moments, they tend to be limited to modest areas in β1- β2 plane by 

difficulty of parameter estimation and other practical considerations21. 

 

In contrast, as presented below, the metalog family provides a choice of boundedness for a wide range of 

combinations of skewness and kurtosis, flexibility to match higher order moments, and a straight-forward 

method for parameter estimation. 

 

 

                                                
29 Nagahara (1999). Cheng (2011). 



 

 
Page11 

 

  

Figure 1. Flexibility and Bounds Limitations of Pearson Distributions 

 

 

3.  The Unbounded Metalog Distribution 

 

3.1 A Generalized Logistic Distribution 

 

In terms of Table 1, our development of the metalog family starts with the logistic as a base distribution, 

introduces modifications to its quantile function, and uses three of the Table-1 modification methods -- 

parameter substitution, transformation, and series expansion. 

 

Among its Type I interpretations, the logistic is the limiting distribution of the midrange sample (average of 

largest and smallest random samples) as sample size approaches infinity.  We chose it as a base 

distribution, however, not because of its Type I interpretations, but because of its simple closed form 
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expressions for PDF, CDF, and quantile function; smoothness and symmetry; infinite differentiability in 

closed form; tail behavior that is “in between” the lighter-tailed beta and normal distributions and the 

heavier-tailed student t distributions, and its wide range of fully-investigated and well-known properties30.   

 

In terms of which form to modify, we have chosen the quantile function.  Like Burr (1942), we prefer to 

start with a closed-form CDF or quantile function because, assuming differentiability, either one can be 

easily differentiated to find the PDF. In contrast, starting with the PDF often leads to a form that cannot be 

conveniently integrated to find the CDF or quantile function. We have chosen to modify the quantile 

function in particular because, in contrast to the CDF, it expresses the value x of a random variable as a 

function of probability y, thereby having the simplicity of being scale-independent of x and also 

guaranteeing ease of use in Monte Carlo simulation31.  Moreover, the logistic quantile function in particular 

is linear in its parameters, and thus is already a QPD32 prior to any modification. The logistic quantile 

function is 

 

µ +	s	ln	� �	
��														 	 	 for	0	<	y	<	1	 	 	 (1)	 	 	
 

where µ is the mean, median and mode, and s is proportional to standard deviation σ = s π /	√3. 

 

For modification method, we use a combination of parameter-substitution (following Pearson’s lead) and 

series expansion, where ai’s are real constants. 

 

µ = a1 + a4(y -0.5) + a5(y-0.5)2+ a7(y-0.5)3+ a9(y-0.5)4 + …          (2) 

s = a2 + a3(y-0.5) + a6(y-0.5)2 + a8(y-0.5)3 + a10(y-0.5)4 +  …       (3) 

 

Substituting these series expansions for the parameters µ and s is easily interpreted. Note that the 

unmodified logistic distribution (1) is smooth, symmetric, unimodal, and unbounded. Imagine how its shape 

might change if the otherwise-constant µ and s were to change systematically.  For example, given a 

systematically increasing standard-deviation parameter as one moves from left to right it, is natural to 

visualize that a right-skewed distribution would result. Alternatively, if the standard deviation parameter 

decreases when moving from left to right, one might visualize that a left skewed distribution would result. 

A range of such distributions is shown in Figure 2. 

 

Similarly, one can envision that increasing µ from left to right would make a distribution fatter in the middle 

and therefore have lighter tails.  And by systematically decreasing it as one moves from left to right, the 

                                                
30 Balakrishnan (1992) 
31 In Monte Carlo simulation via the inverse transform method, uniformly distributed random samples of y can simply 

be inserted into a closed-form quantile function to yield corresponding samples of x.  This is trivially simple for closed-

form quantile functions in contrast to the non-linear optimization or look-up tables typically required otherwise. 
32 Keelin and Powley (2011) provide definitions, moments derivation, linear parameter estimation, and other QPD 

properties that we further build upon in this paper. 
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distribution would become thinner (or spikier) in the middle with correspondingly heavier tails.  A range of 

such distributions is shown in Figure 3. 

 

Regarding (2) and (3), our choice of an unlimited number of series-expansion terms for modifying µ and s 

might be envisioned to provide nearly unlimited shape flexibility, the specifics of which we explore in 

Section 3.5.  

 

Substituting (2) and (3) into the logistic quantile function (1) yields a generalized logistic quantile function, 

where n is the total number of series terms in use: 

  																����� = �	 + ��ln � �	
�� + ���� − 0.5�	ln � �	
�� + �!�� − 0.5� + …              (4) 

 

 

In order for ����� to be a valid quantile function of a continuous distribution, it must be strictly increasing 

as a function of �.  That is, 
""� #�����$ > 0	for all � ∈ �0, 1�.	 Applying this requirement to (4) leads to a 

feasibility condition on the constants �(. 
 													 )*�	�	
�� 	+	�� + �
,.-��	
��+ 	ln � �	
��.	+ 	�!		+ … > 0   for all �	 ∈ �0, 1� (5) 

 

For example, if �( = 0 for all i	≥	3, then �� must be positive in order for this condition to hold.  Since (4) 

reduces to (1) in this case, the requirement that �� be positive is equivalent to requiring that the standard 

deviation be positive, which must be true for any probability distribution.  (5) is the generalization of this 

requirement that corresponds to the generalized quantile function (4).  Any set of constants 0				= (�	, … , ��� 
that satisfies (5) we shall henceforth call feasible. 

 

The order of the terms in (2), (3) and (4) is somewhat arbitrary and could be changed without loss of 

generality.  We chose the order such that the first term would be the median; the second term would be a 

base shape (the logistic) that subsequent terms modify; the third term would primarily modify skewness; 

the fourth term would primarily modify kurtosis; and subsequent terms would alternate in further refining 

the s and µ parameters in (3) and (2) respectively. The third and fourth terms could be reversed if one 

wanted, for example, the third term to modify kurtosis and the fourth term to modify skewness.  This 

would be useful in a situation where n = 3 and it is known from a priori considerations that a symmetric 

distribution with variable kurtosis properties is appropriate. 

 

Since (4) is linear in the constants 0				= (�	,… , ���, so can be the parameter estimation of these constants.  

Given a set of m distinct CDF data points (2, 3� where 2				= (4	, … , 45�,					3				=				(�	,… , �5�, the constants are 

related to the data by a set of linear equations: 
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Figure 2. Skewed distributions produced by systematically varying  

the standard-deviation parameter of a logistic distribution  

 

 
 

Figure 3. Symmetric distributions produced by systematically varying  

the mean parameter of a logistic distribution 
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								4	 = �	 + ��ln � �6	
�6� + ����	 − 0.5�	78 � �6	
�6� + �!��	 − 0.5� + … 								4� = �	 + ��ln � �*	
�*� + ����� − 0.5�	78 � �*	
�*� + �!��� − 0.5� + … 

             ⋮ 
      	45 = �	 + ��ln � �:	
�:�+ ����5 − 0.5�	78 � �:	
�:� + �!��5 − 0.5� + … 

 

Equivalently, 2 = Y0, where 2 and 0 are column vectors and Y is the m x n matrix 

 

 Y = ;<<
= 1					 ln � �6	
�6�								��	 − 0.5� ln � �6	
�6�					��	 − 0.5�…⋮1		 			ln � �:	
�:�						��5 − 0.5� ln � �:	
�:�				��5 − 0.5�…>??

@
                                        	 

 

If m=n and Y is invertible, then 0 is uniquely determined by 0 = Y-12.  If m≥n and Y has rank of at least n, 

then 0 is can be conveniently estimated using the familiar linear least squares equation 0 = [YT Y]-1 YT2, 

which reduces to 0 = Y-12 when m=n.33 As such, this parameter estimation method can be interpreted as 

the maximum likelihood estimator if a Gaussian noise model is assumed. Note that it scales directly with n, 

the number of series terms in use. The size of the matrix to be inverted is n x n regardless of the number of 

data points m. 

 

These observations give rise to the following definitions and formalizations. 

 

3.2 Meta Distributions 

 

We use the term “meta-distribution” to reference the class of a probability distributions that generalize a 

base distribution by substituting for one or more of its parameters an unlimited number of shape 

parameters.  In doing so, the shape of a meta-distribution “goes beyond” the shape of the base distribution 

with considerable added flexibility.  To be useful, a meta-distribution must also be associated with a 

practical method for estimating its parameters. 

 

The generalized logistic distribution above is one specific example of a meta-distribution, which we formally 

define below as the “metalog” distribution.  The term “metalog” is short for “meta-logistic”. 

 

Whenever the functional form of a base distribution is linear in its parameters, as is true for the quantile 

function of the logistic distribution, one can employ the same theoretical development method as above to 

create a new meta-distribution.  For example, a meta-normal distribution can be developed by replacing (1) 

with the normal quantile function 

 

                                                
33 Keelin and Powley, 2011, also includes a weighted least squares formulation as an option for providing additional 

shape flexibility. 
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µ + σ Φ−1�y�												 where Φ is standard normal CDF and 0 < y < 1. 

 

If one then substitutes series expansions like (2) and (3) for µ and σ, the “meta-normal” follows from the 

same subsequent development as in Section 3.1.  Similarly, one could develop meta-Gumbel and meta-

exponential distributions – since these too possess quantile functions that are linear in their parameters.  

 

Such meta-distributions defined with respect to quantile functions, including the metalog, are generally 

Quantile Parameterized Distributions (QPDs) as defined by Keelin and Powley (2011).  The Simple Q Normal 

distribution used for illustration in that paper is akin to the first several terms of the meta-normal. 

 

Our initial explorations of the meta-normal distribution show that its flexibility properties are similar to 

those of the metalog, which we discuss below.  For this paper, we have chosen to develop the metalog 

rather than the meta-normal because of its simple closed-form expression and greater ease of use 

compared to the meta-normal, which requires non-closed form look-up tables.  For many practical 

applications, either would suffice. 

 

3.3 The Metalog Distribution 

 

We define the metalog distribution by formalizing the generalized logistic distribution of Section 3.1. Note 

that we have subsumed the linear-least-squares solution for 0 within the following definition in order to 

express the metalog, consistent with practical needs, as a function of its quantile parameters �2, 3�.  
 

Definition 1.  Metalog Quantile Function.  The metalog quantile function with n terms is  

 

   ����; 2, 3� =  	�	 + ��ln B �1 − �C 																																																																																																														8 = 2 

�	 + ��ln B �1 − �C + ���� − 0.5�	78 B �1 − �C 																																																															8 = 3 

�	 + ��ln B �1 − �C + ���� − 0.5�	78 B �1 − �C + �!�� − 0.5�																																			8 = 4 

(6) 

																		��
	 + ���� − 0.5��
	� 																																																																																					for	odd	n	 ≥ 5 			��
	 + ���� − 0.5�G*
	 ln � �	
�� 																																																																				for	even	n ≥ 6  

where � is cumulative probability, 0 < � < 1.  2 = (4	, … , 45�  and 3 = (�	,… , �5�  are column vectors of 

length m >=n consisting of the x and y coordinates of CDF data, 0 < �( < 1	for	each		�( ,  and at least 8 of 

the �(’s are distinct.  The column vector of scaling constants a = (�	, . . . , ��� is given by 

a = [Yn
T Yn]-1 Yn

T2 ,                                                                                                                         (7) 34      

where Yn
T is the transpose of Yn, and the m x n matrix Yn is 

 

                                                
34In the special case of m = n, (7) reduces to a = Yn

-1 2 . 
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Yn =                   (8) 

 

 ;<<
=1					 	ln � �6	
�6�⋮1		 			ln � �:	
�:�>?

?@                                                            																																																							8 =	2	
	;<<
=1					 	ln � �6	
�6�								��	 − 0.5� ln � �6	
�6�					⋮1		 			ln � �:	
�:�						��5 − 0.5� ln � �:	
�:�				>?

?@                                                                 8 = 3 

;<<
= 1					 ln � �6	
�6�								��	 − 0.5� ln � �6	
�6�					��	 − 0.5�⋮1		 			ln � �:	
�:�						��5 − 0.5� ln � �:	
�:�				��5 − 0.5�>??

@
                                        	8 = 4     

 

NO�
	| ��	 − 0.5�GQ6*⋮��5 − 0.5�GQ6* R                                                         for	odd	n	 ≥ 5	

;<<
<=O�
	| ��	 − 0.5�G*
		ln	� �6	
�6�⋮��5 − 0.5�G*
		ln	� �:	
�:�>??

?@
      for	even	n	 ≥ 6. � 

 

Definition 2.  Metalog PDF. Differentiating (6) with respect to � and inverting the result yields the metalog 

probability density function (PDF)35: 											S���� =                                                                              (9) 	�	�1 − ��	�� 																																																																																																																															8 = 2 1	
T ���	�1 − ��	+	�� + � − 0.5��1 − �� + 	ln � �1 − ��.	U 																																																															8 = 3 

1	
T ���	�1 − ��	+	�� + � − 0.5��1 − �� + 	ln � �1 − ��.	+ 	�!	�U 																																																	8 = 4 

V�S�
	����
	 + �� B8 − 12 C �y − 0.5��
�� W
	 																																																															for	odd	8	 ≥ 5 

 

T�S�
	����
	 + �� +��
,.-�G*Q6��	
�� +��� − 1� �y − 0.5�G*
�ln � �	
��.			U
	 																for	even	8	 ≥ 6. � 

                                                
35 For proof that this method yields the PDF, see Keelin and Powley (2011). 
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Note that the PDF S���� is expressed as a function of cumulative probability y.  To plot this PDF as is 

customary, with values of random variable X on the horizontal axis, use �����  on the horizontal axis,  S����  on the vertical axis, and vary � ∈ �0, 1� to produce the corresponding values on both axes.                            

 

For (6) and (9) to be a valid probability distribution, the matrix Yn
T Yn must be invertible and the constants a 

must be feasible. Since (6) is a QPD, invertibility is guaranteed in all but pathological cases. 36 

 

Regarding feasibility, note that 	S���� is the reciprocal of the feasibility expression on the left hand side of 

(5).  Since this expression is positive if and only if its reciprocal is positive, it follows that the feasibility 

condition (5) can be restated stated as  											S���� > 0                         for all �	 ∈ �0, 1�       (10) 

That is, 0 is feasible if and only if S���� is everywhere positive, and for any feasible 0, S���� is the 

probability density function that corresponds to (6). 

 

Note that we have placed no constraints on the data (2,3�.  As such, there is no guarantee that any 

particular data set will lead to feasibility.  Indeed, many data sets will not.  If in doubt, feasibility must be 

checked according to (5) or (10).  In practice, this means computing or plotting S����	and ensuring that the 

result is positive over all � ∈ �0, 1�.  If so, then 0 is feasible and S���� is a valid probability density 

function.  Later in this paper, we provide closed-form constraints on the data (2, 3� that ensure feasibility 

for the case of n = 3.  Any data set (2,3� that yields feasible constants 0 we shall henceforth call feasible. 

 

Given feasibility, certain special cases of these constants can be readily interpreted. In all cases, �	 is the 

median as is evident from observing that all subsequent terms are zero when y = 0.5.  Constants �( for X	 ≥	2 determine shape.  When �� > 0	and �( = 0 for all i 	≥ 	3 , (6) is a logistic distribution exactly, with ��	being directly proportional to the standard deviation -- as is obvious by comparison with (1) .  When �( = 

0 for i 	≥ 	4 , �� primarily controls skewness.  Increasing �� from zero results in an increasingly right-skewed 

distribution, while increasingly negative values of �� result in an increasingly left-skewed distribution.  

When �! > 0	and  �� = 0, �� = 0, and �( = 0 for X ≥ 	5, (6) reduces to a linear function of y, which means 

that it is a uniform distribution exactly.  More generally, when �� > 0, �� = 0, and �( = 0 for X ≥ 	5 , �! 

determines kurtosis.  Increasing �! from zero reduces kurtosis, resulting in a symmetric distribution that is 

fatter than a logistic in its mid-range with correspondingly lighter tails (e.g. more like a normal or symmetric 

beta distribution than a logistic.)  Reducing �! from zero into increasingly negative values increases 

kurtosis, producing a distribution that is narrower than a logistic in its mid-range with correspondingly 

heavier tails (e.g. more like a student-t distribution with eight or fewer degrees of freedom). 

 

Generally, the metalog, like the logistic, is unbounded.  However, it is bounded in the special case that  �( = 

0 for all  X	 ∈ {2, 3, �77	Z[Z8	8\S]Z^_ ≥ 6}.  This is evident from observing that this is the particular set of 

                                                
36 “If such a (pathological) case were to occur, a small perturbation would solve the problem.  In practical applications, 

we have never encountered a case where (the matrix that needs to be inverted) is singular.” (Keelin and Powley, 2011, 

p. 212) 
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�(’s that multiplies the unbounded expression 78 � �	
�� in (6).  If all these �(’s are zero, then only bounded 

terms remain.  Table 2 summarizes the above interpretations. 

 

Table 2. Interpreting Metalog Constants 

 

Constants Interpretations 

a1 location,  median 

k * { ai for all i >= 2}, where k > 0 k is a scale parameter 

ai for all i >= 2 shape 

a2 > 0, ai =0 for all i >= 3 Mn is a logistic distribution 

a4 > 0, ai =0 for all i ∈ {2,3, integers > 

4} 

Mn is a uniform distribution 

a2 > 0, a4 > 0, and ai =0 for i ∈ {3, 

integers >= 5}. a2 and a4 need not 

sum to 1. 

Mn is a mixture of logistic and uniform distributions, 

where a1 is the mean and median of both. Mn is 

unimodal and symmetric. In Figures 1 and 4, Mn plots to 

the vertical line segment from (0, 1.8) to (0, 4.2). 

a2 > 0, a4 < 0, a4 / a2 >= - 4, and ai =0 

for all i ∈ {3, integers >= 5}. 

Mn is unimodal and symmetric.  In Figures 1 and 4, Mn 

plots to the vertical line segment from (0, 4.2) to (0, 

17.2).   

a2 > 0, -1.67 < a3 / a2 < 1.67, and ai =0 

for all i >= 4 

Mn is unimodal and right-skewed if a3 > 0, unimodal and 

left-skewed if a3 < 0. In Figure 4, Mn plots to the “3-term 

metalog” line segment from (0, 4.2) to (4.29, 8.58). �( = 0 for all  X	 ∈{2, 3, �77	Z[Z8	8\S]Z^_ ≥ 6} Mn is bounded 

�( ≠ 0 for any X	 ∈{2, 3, �77	Z[Z8	8\S]Z^_ ≥ 6} Mn is unbounded 

 

3.4 Metalog Moments 

 

We use traditional notation for moments of the n-term metalog distribution ��: 

 µ’k,n kth moment 

 µk,n kth central moment 

 σn standard deviation = µ2,n
1/2 

 β1 square of standardized skewness = (µ3,n/σn
3)2       (horizontal axis of Figures 1, 4, 6, 7) 

β2 standardized kurtosis = µ4,n/σn
4                              (vertical axis of Figures 1, 4, 6, 7) 

 

Since the metalog is a QPD, then as shown by Keelin and Powley (2011), it’s kth moment is given simply by 

the integral of the kth power of the quantile function 

 

µ’k,n = b #����; 2, 3�$c	�d, 	dy 
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For	8 = 5 terms, this integral yields an explicit expression in closed form for the mean 

 µ’1,5 = a	 + ef� + eg	�				                                                                                      (mean)    

 

 

from which it follows that the kth central moment for the 5-term metalog is given by 

 

µk,5 = b #	�d, �-��; 2, 3� − �a	 + ef� + eg	��	$c	 dy 

 

Though tedious to solve by hand, this integral can be shown to yield the following central moments of �- 

as closed-form polynomial expressions of the �(’s.  

 

µ2,5 = 
	�h���� + � 		� + i*�j� ��� + ���! + )k*	� + )f)g	� + )g*	l,				                     (variance) 

µ3,5 = h������ + 	�!h���� + 	� �����! + 	jh������! + 	l ���!� + ����- +											 	�! ����- +	 		l, h�����- + 	! ���!�- + 	j, �!��- + 		�, ���-� + )gf�ml,             (skewness) 

µ4,5=	 715 h4�24 + 32h2�22�32 + 730 h4�22�32 + �3480 + 124 h2�34 + 7h4�341200 + 2h2�23�4 + 12 �2�32�4 +												23 h2�2�32�4 + 2�22�42 + 16 h2�22�42 + 18 �32�42 + 140 h2�32�42 + 13 �2�43 + �4480 + �22�3�5 +												12 h2�22�3�5 + 124 �33�5 + 140 h2�33�5 + 56 �2�3�4�5 + 245 h2�2�3�4�5 + 340 �3�42�5 +													
            

	j ����-� + 	p,h�����-� + 	!- ����-� + 		i*)f*)g*m-j, + 		- ���!�-� + 		)k*)g*�-�, + 
	!�, ���-� + )gk	-	�,  

                                                                                  (kurtosis) 

     

As k and n increase, the number of polynomial terms increases, but within a pattern that continues with the 

kth central moment of the n-term metalog being a closed-form kth order polynomial of the ai’s.  For 

example, the 9th central moment of the 5-term metalog µ9,5 has a closed form expression that consists of a 

9th order polynomial in the ai’s with 297 terms.  The 4th central moment of the 10-term metalog µ4,10 has 

474 terms.  These central moments are available from the author upon request.  For all such central 

moments µk,n, the central moments of µk,j where j < n can be calculated from µk,n simply by setting �( =0	for	all	X > q. 
 

Given central moments in closed form, corresponding closed-form cumulants can also be calculated.  Thus, 

the cumulants of the sum of independent (irrelevant37) metalog-distributed random variables can be 

expressed in closed form as the sum of the cumulants of these random variables. 

 

 

 

 

                                                
37 According to Howard and Abbas (2015) 
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3.5 Metalog Shape Flexibility 

 

The shape flexibility of the metalog expands with the number of terms in use.  As shown in Figure 4, for 

n=2, the metalog reduces to a logistic distribution and thus to the single point (0, 4.2).  For n=3, metalog 

shape flexibility expands from a point to a line segment as shown.  This line segment contains the full range 

of shapes shown in Figure 5.   

 

For n=4, the metalog shape flexibility further expands to include all of area within “4-term metalog” 

envelope38.  This area encompasses many common distributions including normal, uniform, triangular, 

logistic, exponential, Gumbel, and student t distributions with 4 or more degrees of freedom.  Within the 4-

term metalog envelope, the Pearson family offers unbounded distributions only below the Pearson-5 line.  

In contrast, the 4-term metalog offers unbounded distributions for a significant portion of the Pearson 

semi-bounded area and a significant portion (primarily unimodal) of the Pearson bounded area. Similarly, 

the 4-term metalog offers substantial additional unbounded flexibility compared to the areas below the 

lognormal and log-logistic lines, which are the upper limits respectively for unbounded Johnson S and L 

distributions.   

 

There are certain relatively extreme skewness-kurtosis combinations that unbounded members of these 

other Type III families can represent that the 4-term metalog cannot.  These include student t distributions 

with 3 or fewer degrees of freedom, and other distributions outside of the envelope. 

 

However, with 5 or more terms, the metalog can represent multi-modal shapes and 5th or higher-order 

moments.  In addition, the metalog’s (β1, β2) coverage expands further.  For example, with 10-terms, the 

metalog can reasonably represent student-t distributions with 3 or 2 degrees of freedom, the latter of 

which corresponds to (β1, β2) = (0,131).  The metalog cannot effectively represent the Cauchy distribution 

(student t with one degree of freedom), all the moments of which are infinite.  

 

  

                                                
38 Since the metalog is parameterized by data rather than moments, we derived the metalog flexibility limits in Figure 

4 by varying 0				= (�	, … , ��� over its feasible range and deriving the corresponding (β1, β2) feasible range from the 

moments expressions in Section 3.4.  This process was enhanced by Keelin and Powley’s (2011) proof that the set of 

feasible 0				= (�	, … , ��� is convex. 
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Figure 4. Shape flexibility for 2-4 term metalog distributions 
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Figure 5. Range of shapes for 3-term metalog 

 

 

4. Bounded and Semi-Bounded Metalogs 

 

In many cases, one knows from a priori considerations that a distribution of interest is either semi-bounded 

or bounded.  For example, uncertainties involving sizes, weights, and distances might naturally have a lower 

bound of zero and no definite upper bound.  Uncertainties that involve fractions of a population are 

typically are bounded between zero and 100%.  For such cases, it is desirable to have flexible, simple, easy-

to-use distributions with bounds that can be specified a priori. 

 

We now develop such distributions.  In terms of Table 1, we use the metalog quantile function (6) as a base 

distribution and modify it using the method of transformation.  This approach effectively propagates 

metalog shape flexibility forward into the domain of semi-bounded and bounded distributions.  It also 

preserves the closed-form simplicity of (6) as well as the ease-of-use associated with linear quantile-

parameterization. 

 

Specifically, we use log and logit transformations, respectively, to produce semi-bounded and bounded 

members of the metalog family.  These well-known transformations have been used previously for a similar 

purpose by Johnson (1949) and Tadikamalla and Johnson (1982). 
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4.1 Semi-Bounded Metalog (Log Metalog) Distribution 

 

Suppose that r = ln�4 − ]s� is metalog-distributed according to (6), where ]s is a known lower bound for x.  

Setting ln�4 − ]s� equal to (6) and solving for 4 yields the log metalog quantile function with 8 terms: 																				��stu��; 2, 3, ]s� = ]s + ZvG���																						0 < � < 1																																		�11�																																																				= ]s 																																												� = 0 

 

  

where 2 = �4	, … , 45�, S ≥ 8, each		4( > ]s , 3	 = ��	,… , �5�, 0 < �( < 1	for	each		�( ,at	least	n	of	the	yxys	are	distinct, { = �ln	�4	 − ]s�,… , ln	�45 − ]s��	is	a	column	vector,		 Yn is (8) and 

            a  = [Yn
T Yn]-1 Yn

T
z                                                                                                                      (12)      

 

Differentiating (11) with respect to � and inverting the result yields the log metalog PDF: S�stu��� = S����	Z
vG���																																																		0 < � < 1																	�13�																		= 0																																																																																� = 0 

where  S���� is (9) and ����� is (6). The log metalog feasibility condition is S�stu��� > 0 for all �	 ∈ �0, 1�.   
Since the quantity Z
vG��� is always positive, this condition is equivalent to (10). Some interpretations of 

log metalog constants are provided in Table 3. 

Table 3. Interpreting Log Metalog Constants 

 

Constants Interpretations 

bl location,  lower bound 

a1 scale  

ai for all i >= 2 shape 

a2 > 0, ai =0 for all i >= 3 ��stu  is a log-logistic distribution, also known in 

economics as the Fisk distribution 

a4 > 0, ai =0 for all i ∈ {2,3, integers > 

4} 

��stu  is a log-uniform distribution (i.e. ln(x- bl) is 

uniformly distributed) 

 

Similarly, for representations that have a known upper bound bu  and no lower bound, the transform r = -

ln�b� − 4� yields a corresponding negative-log (nlog) quantile function and PDF 															���stu��; 2, 3, b�� = b� − Z
vG���																																																												0 < � < 1																																																	= b� 																																																																																		� = 1 

 																													S��stu��� = S����	ZvG���                                                     0 < � < 1				   																																															= 0																																																																																					� = 1	 
where 2 = �4	, … , 45�, each		4( < b�, 	{ = �−ln	�b� − 4	�, … ,−ln	�b� − 45��, 3	 = ��	,… , �5�, 0 <�( < 1	for	each		�( ,		and (12) determines aaaa. 
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4.2 Semi-Bounded Metalog Shape Flexibility 

 

Like the metalog, log metalog shape flexibility expands with the number of terms in use.  However, the 

addition of a lower-bound parameter bl increases the shape dimensionality by one for each value of n.  For 

example, the 2-term metalog is a point in the (β1, β2) plot and the 3-term metalog is a line segment.   In 

contrast, the 2-term log metalog is a line in the (β1, β2) plot and the 3-term log metalog is an area.  

Effectively, this means that for any given number of terms n, the log metalog is more flexible than the 

metalog. 

 

As shown in Figure 6, flexibility of the 2-term log metalog is simply that of the log-logistic line. Equivalently, 

this is the flexibility of the Fisk distribution in economics, which has been used in to represent survival data.  

The 3-term metalog increases this flexibility to cover the area between the upper and lower limits shown.  

The 4-term log metalog covers the expanded limits between the upper and lower 4-term lines shown.  

Unlike the “4-term metalog envelope” in Figure 4, these upper and lower limits extend indefinitely down 

and to the right corresponding to indefinitely larger values for β1 and β2 .  From Figure 6, it is evident that 

this 4-term semi-bounded metalog offers far more flexibility than the Pearson semi-bounded distributions.  

In addition, it offers far more flexibility than the semi-bounded Johnson S and L distributions, which are 

limited to the log-normal and log-logistic lines respectively. 

 

With 5 or more terms, the log metalog’s (β1, β2) coverage expands further, providing a compelling option 

for representing a wide range of semi-bounded distributions.  In addition, additional terms provide 

additional flexibility to match 5th and higher-order moments.   

 

4.3 Bounded Metalog (Logit Metalog) Distribution 

 

The logit metalog distribution is useful for representations that have known lower and upper bounds, bs  
and b� 	respectively, where b�>bs.  The logit metalog distribution is the metalog transform that corresponds 

to r =	 logit�4� = ln ��
����
��  being metalog-distributed.  Setting ln ��
����
��  equal to (6) and solving for 4 

yields the logit metalog quantile function with n terms: ��stu(���; 2, 3, bs , b�� = �������G���		���G���	                         0 < � < 1                            (14) 

 																																																				= bs 																																																		� = 0 																																																				= b�																																																	� = 1 

where 2 = �4	, … , 45�, bs < 4( < b�	for	each		4( , 3	 = ��	, … , �5�, 0 < �( < 1	for	each		�( ,	 {  =	+ln ��6
����
�6� , …	, ln ��:
����
�:�. 	and (12) determines a.   Differentiating (14) with respect to � and 

inverting the result yields the logit metalog PDF: S�stu(���� = S���� �	���G����*���	
�����G���                                  0 < � < 1                 (17) 																																		= 0																																																															� = 0	�^	� = 1                                    
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where  S���� is (9) and ����� is (6). The logit metalog feasibility condition is S�stu(���� > 0 for all �	 ∈�0, 1�.   Since the quantity 
�	���G����*���	
�����G��� is always positive, this condition is equivalent to (10). Some 

interpretations of logit metalog constants are provided in Table 4. 

 

 

Figure 6. Shape flexibility for 2-4 term semi-bounded metalog distributions 
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Table 4. Interpreting Logit Metalog Constants 

 

bl and bu location, lower and upper bound 

bu - bl  where bu >  bl scale  

ai for all i >=1 Shape 

a2 > 0, ai =0 for all i >= 3 ���  is a logit-logistic distribution39, also known as the 

Tadikamalla and Johnson LB distribution40 

a1 = 0, 0 < a2 < 1, ai =0 for all i >= 3 ���  is a unimodal logit-logistic distribution 

a1 = 0, a2 = 1, ai =0 for all i >= 3 ���  is a uniform distribution 

a1 = 0, a2 > 1, ai =0 for all i >= 3 ���  is a U-shaped, symmetric logit-logistic distribution 

 

 4.4 Bounded Metalog Shape Flexibility 

 

Like the metalog and log metalog, logit metalog shape flexibility expands with the number of terms in use.  

However, the presence of an upper-bound parameter in addition to a lower bound parameter increases the 

shape dimensionality for any value of n by two relative to the metalog and by one relative to the log  

metalog.  For example, the 2-term metalog is a point in the (β1, β2) plot and the 3-term metalog is a line 

segment.   In contrast, the 2-term logit metalog is a area in the  (β1, β2) plot and the 3-term logit metalog is  

a broader area plus flexibility to match a 5th moment.  Effectively, this means that for any given number of 

terms n, the logit metalog is more flexible than either the metalog or log metalog. 

 

As shown in Table 4, the two-term logit metalog is also known as the Tadikamalla and Johnson LB 

distribution.  As shown in Figure 7, the flexibility of this distribution is the entire accessible area down to 

and including the log-logistic line.  The 3-term logit metalog increases this flexibility to cover the entire 

accessible area down to and including the “3-term bounded metalog lower limit”.  The 4-term logit metalog 

covers the entire accessible display area shown in Figure 7. It’s lower limit includes the following points that 

are below that display area: (0,21), (0.1,29), (0.4,40), (1,52), (1.8,70),(3.05,95),(4.8,135), and (10.5,330).  

 

Like the upper and lower limits in Figure 6, the upper and lower limits in Figure 7 extend indefinitely down 

and to the right. Thus, it is evident that this 4-term bounded metalog offers far more flexibility than the 

Pearson bounded distributions.  In addition, it offers far more flexibility than the Johnson S and L bounded 

distributions, which are limited to the areas above the log-normal and log-logistic lines respectively. 

 

With 5 or more terms, the logit metalog’s (β1, β2) coverage expands further, providing a compelling option 

for representing a wide range of bounded distributions.  In addition, additional terms provide additional 

flexibility to match 5th and higher-order moments.   

 

 

                                                
39 Wang and Rennolls (2005) 
40 Tadikamalla and Johnson1(1982). Balakrishnan (1992). 
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Figure 7. Shape flexibility for 2-3 term bounded metalog distributions 

 

5.  Metalog vs. Alternative Representations of Traditional Distributions 

 

When the CDF data �4, ��	is from a known source distribution, there would ordinarily be no need to 

represent this CDF data with a metalog.  However, metalog representations of CDF data from previously -

named source distributions may provide insight about the range of effectiveness and limitations of metalog 

representations and about metalog performance compared to alternatives.  The alternatives we consider 

include a three-branch discrete approximation with 30%, 40%, and 30% probabilities assigned to the 10%, 

50%, and 90% quantiles. They also include a range of QPDs, including the normal, the Simple Q Normal 

(Keelin and Powley, 2011), the logistic, and metalog distributions with various numbers of terms. 

 

The figures and tables below compare these alternatives based on CDF data taken from a wide range of 

source distributions.  In each case, we use 105 points from the CDF of the source distribution to 
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parameterize the metalog and alternative representations.  These 105 points correspond to � =� 		,,, , �	,,, , j	,,, , 	,	,,, , �,	,,, , …	 , pl,	,,, , pp,	,,, , pp!	,,, , ppm	,,, , ppp	,,,	�.   For each �(	the corresponding 4(	is the 

inverse CDF of the source distribution.  For source distributions with known upper and/or lower bounds, we 

used the corresponding log or logit metalog.  

  

5.1 Unbounded source distributions 

 

For example, Figure 8 illustrates how �- approximates a particular extreme value distribution (� =100, � = 20, Z�� = −0.5).  Visually, the metalog CDF is virtually indistinct from that of the extreme value 

source distribution, and the PDF’s are very similar.  To measure the accuracy of this approximation, we use 

the Kolmogorov-Smirnoff (K-S) distance (maximum cumulative-probability deviation on the CDFs).  For 

convenience, we measure this as the maximum over the 105 points defined above.  In this case, the K-S 

distance is 0.009, which means that the difference between the source-distribution and �-	CDFs is 

everywhere less than 1% probability. 

 

 

Figure 8. �- representation of an extreme value distribution 

 

 

Source: extreme value (� = 100, � = 20, Z�� = −0.5) 

 

Table 5 shows this K-S distance for a range of unbounded source distributions and approximation methods.  

Based on the rankings at the bottom of this table, �! and �- are better that the other approximation 

methods and �- is best overall. 
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5. Accuracy of Various Approximations for Unbounded Source Distributions 

 

 

  

 

5.2 Semi-bounded source distributions 

 

For a range of semi-bounded source distributions, we similarly compare the log metalog to other 

approximation methods.   Table 6 shows the results.  The log metalog approximations with 3-5 terms 

generally rank better than the other methods.  In addition, the log metalog approximations have the same 

bounds as the source distributions, whereas the other approximation methods (discrete, normal, simple Q-

normal, and logistic) do not. 

 

5.3 Bounded source distributions 

 

For a range of bounded source distributions, we similarly compare the logit metalog to other approximation 

methods.   Table 7 shows the results.  The logit metalog approximations with 3-5 terms generally rank 

better than the other methods.  In addition, the logit metalog approximations have the same high and low 

bounds as the source distributions, whereas the other approximation methods do not.  

While most of the source distributions in Table 3 are unimodal, note that Beta (α=0.8, β =0.9) and Beta (α 

=0.9, β =0.9) are bimodal (U-shaped) and are represented by the logit metalog with a high degree of 

accuracy (K-S distance <= 0.001).  In addition, note that non-smooth PDFs (uniform and triangular) are well 

represented (K-S distance <= 0.003).  

 

 

 

 

 

 

K-S Distance

Source Distribution Approximation Method

Discrete* QPD

p: 30-40-30 Normal Simple Logistic Metalog

q: 10-50-90 Q-Normal M2 M3 M4 M5

Normal (µ=50, σ=15) 0.200 0.000 0.000 0.035 0.035 0.035 0.006 0.006

Logistic (µ=40, s=4.6) 0.200 0.032 0.009 0.000 0.000 0.000 0.000 0.000

Student t (df=6) 0.200 0.043 0.019 0.012 0.012 0.012 0.008 0.008

Extreme Value (µ=100,σ=20, ε=-0.5) 0.200 0.064 0.020 0.093 0.093 0.070 0.017 0.009

Extreme Value (µ=100,σ=20, ε=-0.2) 0.200 0.027 0.004 0.056 0.056 0.047 0.008 0.008

Extreme Value (µ=100,σ=20, ε=-0.025) 0.200 0.102 0.039 0.111 0.111 0.036 0.028 0.006

Maximum 0.200 0.102 0.039 0.111 0.111 0.070 0.028 0.009

Average 0.200 0.045 0.015 0.051 0.051 0.033 0.011 0.006

Rank based on lowest Maximum 8 5 3 6 6 4 2 1

Rank based on lowest Average 8 5 3 6 6 4 2 1

* Approximation is bounded, whereas source distribution is unbounded.
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Table 6. Accuracy of Various Approximations for Semi-Bounded Source Distributions 

 

 
 

5.4 Increased accuracy with higher-order terms 

 

Increasing the number of terms beyond 5 further increases accuracy. For example, Figure 9 shows how the 

5-term metalog approximation of the extreme value distribution in Figure 8 becomes nearly exact when 

using 10 terms.  Similar increased accuracy can be observed across the entire range of source distributions 

considered previously. Specifically, Table 8 shows how accuracy increases with each additional term as the 

number of terms increases from five to ten. 

 

Based on Tables 5-8, we observe that the metalog distributions are capable of closely approximating a wide 

range of traditional distributions, and typically do so with greater accuracy than other practical alternatives.   

 

 

K-S Distance

Source Distribution Approximation Method

Discrete*** QPD

p: 30-40-30 Normal** Simple Logistic** Log Metalog

q: 10-50-90 Q-Normal** M2
log M3

log M4
log M5

log

Lognormal (µ=0, σ=0.5) 0.200 0.130 0.068 0.140 0.035 0.035 0.006 0.006

Lognormal (µ=0, σ=0.3) 0.200 0.078 0.026 0.092 0.035 0.035 0.006 0.006

Lognormal (µ=0, σ=0.15) 0.200 0.039 0.012 0.060 0.035 0.035 0.006 0.006

Weibull (λ=3, κ=3) 0.200 0.023 0.009 0.058 0.103 0.037 0.022 0.006

Weibull (λ=7, κ=7) 0.200 0.044 0.009 0.066 0.103 0.037 0.022 0.006

Gamma (κ=4, θ=2) 0.200 0.088 0.029 0.106 0.062 0.038 0.011 0.006

Gamma (κ=2, θ=2) 0.200 0.124 0.056 0.142 0.078 0.038 0.015 0.006

Inverse Gamma (α=3, β=1) 0.200 0.240 * 0.245 0.068 0.038 0.012 0.006

Inverse Gamma (α=5, β=0.5) 0.200 0.174 0.149 0.179 0.059 0.038 0.010 0.006

Exponential (λ=0.5) 0.200 0.174 0.130 0.193 0.103 0.037 0.022 0.006

Chi-Squared (df=3) 0.200 0.143 0.077 0.161 0.087 0.038 0.017 0.006

Chi-Squared (df=6) 0.200 0.101 0.038 0.119 0.068 0.038 0.012 0.006

Inverse Chi-Squared (df=3) 0.200 0.388 * 0.394 0.087 0.038 0.017 0.006

Inverse Chi-Squared (df=6) 0.200 0.240 * 0.245 0.068 0.038 0.012 0.006

F (df1=1, df2=1) 0.200 0.621 * 0.623 0.020 0.020 0.001 0.001

F (df1=15, df2=30) 0.200 0.106 0.045 0.118 0.039 0.033 0.007 0.006

Maximum 0.200 0.621 0.149 0.623 0.103 0.038 0.022 0.006

Average 0.200 0.170 0.054 0.184 0.066 0.036 0.013 0.006

Rank based on lowest Maximum 6 7 5 8 4 3 2 1

Rank based on lowest Average 8 6 4 7 5 3 2 1

*    Approximation method does not yield a valid probability distribution.

**  Approximation is unbounded whereas source distribution is semi-bounded.

***Approximation is bounded whereas source distribution is semi-bounded. In addition, low bound 

    of approximation does not correspond to low bound of source distribution.
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Table 7. Accuracy of Various Approximations for Bounded Source Distributions 

 

 

 

 

Figure 9. How Ten Terms Increases Accuracy Compared to Five 

 

  
Source: extreme value (� = 100, � = 20, Z�� = −0.5) 

 

K-S Distance

Source Distribution Approximation Method

Discrete*** QPD

p: 30-40-30 Normal** Simple Logistic** Logit Metalog

q: 10-50-90 Q-Normal** M2
logit M3

logit M4
logit M5

logit

Beta (α=3.5, β=3.5) 0.200 0.029 0.005 0.066 0.024 0.024 0.004 0.004

Beta (α=9, β=3.5) 0.200 0.054 0.012 0.084 0.044 0.031 0.008 0.005

Beta (α=0.8, β=0.9) 0.200 0.106 * 0.146 0.013 0.005 0.002 0.001

Beta (α=60, β=1.5) 0.200 0.138 0.069 0.157 0.085 0.037 0.017 0.006

Beta (α=1.2, β=1.2) 0.200 0.076 0.004 0.115 0.005 0.005 0.001 0.001

Beta (α=0.9, β=0.9) 0.200 0.095 * 0.135 0.003 0.003 0.000 0.000

Uniform (A=1, B=1) 0.200 0.088 0.000 0.127 0.000 0.000 0.000 0.000

Triangular (A=5,B=20, C=25) 0.200 0.077 0.016 0.112 0.033 0.019 0.009 0.003

Maximum 0.200 0.138 0.069 0.157 0.085 0.037 0.017 0.006

Average 0.200 0.083 0.018 0.118 0.026 0.016 0.005 0.002

Rank based on lowest Maximum 8 6 4 7 5 3 2 1

Rank based on lowest Average 8 6 4 7 5 3 2 1

*   Approximation method does not yield a valid probability distribution.

**  Approximation is unbounded whereas source distribution is bounded.

*** Bounds of approximation do not correspond to bounds of source distribution.
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Table 8. How Additional Terms Increase Accuracy 

 

  
 

 

 

 

 

 

 

K-S Distance

Unbounded Metalog

Source Distributions M5 M6 M7 M8 M9 M10

Normal (µ=50, σ=15) 0.006 0.002 0.001 0.001 0.001 0.000

Logistic (µ=40, s=4.6) 0.000 0.000 0.000 0.000 0.000 0.000

Student t (df=6) 0.008 0.004 0.002 0.002 0.002 0.001

Extreme Value (µ=100,σ=20, ε=-0.5) 0.009 0.002 0.001 0.001 0.001 0.000

Extreme Value (µ=100,σ=20, ε=-0.2) 0.008 0.003 0.002 0.001 0.001 0.000

Extreme Value (µ=100,σ=20, ε=-0.025) 0.006 0.005 0.005 0.001 0.000 0.000

Maximum 0.009 0.005 0.005 0.002 0.002 0.001

Average 0.006 0.003 0.002 0.001 0.001 0.000

Rank based on lowest Maximum 6 4 5 3 2 1

Rank based on lowest Average 6 5 4 3 2 1

Semi-Bounded Log Metalog

Source Distributions M5
log M6

log M7
log M8

log M9
log M10

log

Lognormal (µ=0, σ=0.5) 0.006 0.002 0.001 0.001 0.001 0.000

Lognormal (µ=0, σ=0.3) 0.006 0.002 0.001 0.001 0.001 0.000

Lognormal (µ=0, σ=0.15) 0.006 0.002 0.001 0.001 0.001 0.000

Weibull (λ=3, κ=3) 0.006 0.004 0.003 0.001 0.000 0.000

Weibull (λ=7, κ=7) 0.006 0.004 0.003 0.001 0.000 0.000

Gamma (κ=4, θ=2) 0.006 0.002 0.002 0.001 0.000 0.000

Gamma (κ=2, θ=2) 0.006 0.003 0.002 0.001 0.000 0.000

Inverse Gamma (α=3, β=1) 0.006 0.002 0.002 0.001 0.000 0.000

Inverse Gamma (α=5, β=0.5) 0.006 0.002 0.001 0.001 0.000 0.000

Exponential (λ=0.5) 0.006 0.004 0.003 0.001 0.000 0.000

Chi-Squared (df=3) 0.006 0.003 0.003 0.001 0.000 0.000

Chi-Squared (df=6) 0.006 0.002 0.002 0.001 0.000 0.000

Inverse Chi-Squared (df=3) 0.006 0.003 0.003 0.001 0.000 0.000

Inverse Chi-Squared (df=6) 0.006 0.002 0.002 0.001 0.000 0.000

F (df1=1, df2=1) 0.001 0.000 0.000 0.000 0.000 0.000

F (df1=15, df2=30) 0.006 0.002 0.001 0.000 0.000 0.000

Maximum 0.006 0.004 0.003 0.001 0.001 0.000

Average 0.006 0.002 0.002 0.001 0.000 0.000

Rank based on lowest Maximum 6 5 4 3 2 1

Rank based on lowest Average 6 5 4 3 2 1
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Table 8. How Additional Terms Increase Accuracy (continued) 

 

 
 

6.  Applications 

 

We now turn to two applications.  The first illustrates how the metalog system can produce insight about 

frequency data that would not be possible using traditional distributions.  Thereby, it becomes evident that 

the metalog system offers a new vehicle for data and distribution research. The second example, decision 

 

analysis, shows an actual decision that would that would have been made wrongly if the decision-makers 

had relied on 3-branch discrete approximations (as commonly used in decision analysis) instead of metalog-

based continuous representations.  As part of the decision-analysis application, we develop simplified 

expressions in terms of assessed quantiles for the metalog system for the special case of n=3. 

 

6.1 Application 1:  Data and Distribution Research 

 

Our data and distributions research examples are based on real data from the disparate fields of fish 

biology and hydrology.  Both show how metalog flexibility can aid data and distribution research by 

generating insight that might not otherwise emerge. 

 

Fish Biology 

 

Metalog distributions can mold themselves to the data with fewer unexamined shape constraints 

compared to other distribution systems such as the Pearson or Johnson.  To illustrate, we consider the 

weight distribution of steelhead trout in the Babine River in northern British Columbia.  A fly fishing lodge 

on that river has kept meticulous records of the weight of every fish landed by clients or staff over many  

K-S Distance

Bounded Logit Metalog

Source Distributions M5
logit M6

logit M7
logit M8

logit M9
logit M10

logit

Beta (α=3.5, β=3.5) 0.004 0.001 0.000 0.000 0.000 0.000

Beta (α=9, β=3.5) 0.005 0.002 0.001 0.000 0.000 0.000

Beta (α=0.8, β=0.9) 0.001 0.000 0.000 0.000 0.000 0.000

Beta (α=60, β=1.5) 0.006 0.003 0.003 0.001 0.000 0.000

Beta (α=1.2, β=1.2) 0.001 0.000 0.000 0.000 0.000 0.000

Beta (α=0.9, β=0.9) 0.000 0.000 0.000 0.000 0.000 0.000

Uniform (A=1, B=1) 0.000 0.000 0.000 0.000 0.000 0.000

Triangular (A=5,B=20, C=25) 0.003 0.003 0.002 0.002 0.001 0.001

Maximum 0.006 0.003 0.003 0.002 0.001 0.001

Average 0.002 0.001 0.001 0.000 0.000 0.000

Rank based on lowest Maximum 6 5 4 3 2 1

Rank based on lowest Average 6 5 4 3 2 1
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Figure 10. How the Metalog System Can Aid Data and Distribution Research 
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years.  Specifically, during 2006-2010, 3,474 steelhead trout were caught and released.  The recorded data 

for the weights of these fish in are plotted in Figure 10.  This plot also shows two alternative distributions  

that could be used to represent that data.  One is the lognormal, a shape which is representative of 

multiple other 1-2 shape parameter distributions (such as the log-logistic, gamma, log-Pearson 3, and F) 

that might typically be used in such a case.  The other is a the ten-term log metalog �	,stu  with bl=0. Note 

that both CDF’s appear to reasonably approximate the CDF data.  However, the corresponding log metalog 

PDF shows a clear bi-modal pattern in the data, which the lognormal and other similar distributions lack the 

flexibility to represent.   

 

The population of steelhead in the river when this lodge is open, during the fall of each year, consists of fish 

that are returning up river to spawn after having lived in salt water.  Those fish returning from salt water to 

spawn for the first time are called “1-salt” fish.  After spawning, these fish typically return to salt water, 

gain additional weight in ocean-rich feeding grounds, and then come back up the river some years later to 

spawn for a second time, becoming “2-salt” fish.  A few very-large steelhead are “3-salt” or “4-salt” fish.  

One might reasonably consider that the modes of the log metalog PDF in Figure 10 may be indicative of the 

“1=salt” and “2-salt” fish populations respectively.  Both the relative population sizes and weight 

differences between “1-salt” and “2-salt” fish are unsolved research questions in fish biology.  It is apparent 

that the log metalog representation may shed some light on both questions.  More broadly, by telling a 

more nuanced story about the data than alternative distributions, the metalog system may open new 

avenues for data and distribution research. 

 

 Hydrology 

 

When a Type I interpretation of data is available, it is natural to use a corresponding Type I distribution. The 

advantage of this approach is that it constrains shape to that which is consistent with the Type I model, and 

relatively few data are needed to parameterize that model.  A disadvantage is that the data may generated 

by a process that does not exactly correspond to the assumptions of the model, and therefore may have a 

legitimately different shape than the model predicts.  If Type I shape constraints go unexamined, erroneous 

conclusions might result.  In contrast, the flexibility of the metalog system allows “the data to speak for 

itself” with fewer unexamined shape constraints compared to other distribution families.  Thus, it can be 

compared to various Type I representations of that same data. 

 

In hydrology for example, it is common to compute maximum annual river stream flows and gauge heights 

for each year as the maximum of the 365 daily observations for that year.  These measures are important 

for decisions such as bridge design, high-water mitigation, and river regulations.  Even though there is 

typically autocorrelation among such observations, one might nevertheless try an extreme value 

distribution to represent such data given that this distribution has a simple Type I interpretation as the 

limiting distribution of a large number of such i.i.d samples.  In Figure 11, we consider 95 years (1920-2014) 

of maximum annual gauge-height data as reported by the US Geological Survey for the Williamson River 
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(below Sprague River) near Chiloquin, Oregon41.   Comparing log-metalog (with bl=0) and extreme value 

representations of this data, we observe that the CDF’s are similar.  In addition, the extreme value PDF 

shows a shape that would commonly be attributed to this data, not only by the extreme value distribution 

but also by the lognormal, log Pearson 3, log-logistic, and other distributions commonly used to represent 

such data in hydrology.  But by molding itself more closely to the data than possible with such other 

distributions, the log metalog PDF tells a somewhat different story:  a lower mode and a “flat region” of 

equally likely values above that mode.  To a knowledgeable expert, this deviation of the data from typically-

assumed shapes might suggest systematic interpretations that would otherwise be masked by assuming a 

Type 1 model that may not appropriately apply. 

 

6.2 Application 2:  Decision Analysis 

 

For decision analysis applications, it is common to use three assessed quantiles that correspond, for 

example, to probabilities of 0.1, 0.5, and 0.9.  In this section, we show how the metalog system simplifies 

for such special cases.  Then we apply it within an actual decision analysis. 

 

SPT-parameterization of the metalog system 

 

Definition 3 (Symmetric-percentile triplet) 42. Metalog parameters (2, 3� are a symmetric-percentile triplet 

(SPT) when they can be expressed as 3 = �α,	0.5,	1-α� and 2 = ��α,	�,.-,	�	
α� for some α ∈ �0, 0.5� and qα < q,.- < q1-α. 

 

This is often the case in decision analysis when, for example, 10-50-90 quantiles ��0.1,	�,.-,	�,.p� are 

encoded from an expert and correspond to the 0.1, 0.5, and 0.9 probabilities on the CDF.   We begin with 

the SPT-parameterized metalog distribution (SPT metalog) and then extend the results to develop the SPT- 

parameterized log- and logit-metalogs.   

 

Proposition 1 (SPT unbounded metalog constants):  Given that random variable X is metalog distributed and 

given a feasible SPT 2 = ��α,	�,.-,	�	
α�, the metalog constants aaaa	=	��	, ��, ��� can be expressed directly 

as 															�	 =	q,.-																�� =	 	� �ln	�	
αα ��
	 ��	
α − �α�                                                                                        (18) 

															�� =	 ��1 − 2α�ln	�	
α
α
��
	 �1 − 2^���	
α − �α�,									where		^ = ��.g
�α�6Qα
�α.            (19) 

 

                                                
41 This data is available from United States Geological Survey website and from www.metalogdistributions.com. 
42 Hadlock and Bickel (2016) originally defined SPTs to parameterize Johnson Quantile-Parameterized distributions (J-

QPDs).  Our definition of SPT is the same, and we use it simplify parameterization of the metalog system for the 

special case of n=m=3.  See Hadlock and Bickel for a J-QPD alternative to the SPT-parameterized metalog system 

presented in this section. 
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Figure 11. How the Metalog System Can Illuminate Unexamined Shape Constraints  
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Proof: For m=n=3, (7) reduces to a = Y3
-1 2.  Given that the 2nd element of yyyy is 0.5, the 2nd row of Y3 reduces 

to (1, 0, 0). Inverting Y3 under this condition, post-multiplying by column vector 2, and substituting in the 

definition of ^ in (19) yields the above expressions. � 

 

The importance of Proposition 1 is that the metalog constants aaaa can be expressed directly in terms of the 

quantile assessments (qα, q0.5, q1−α).  �	 is simply the median, as is true for all metalog distributions. 	�� is 

proportional to the q1−α- qα quantile range.  For example when α	=	0.1,  	�� is 1/(2 ln 9) = 0.23 times the 10-

90 quantile range.  ��, which controls skewness, is also proportional to the q1−α- qα quantile range.  We 

define ^ to mark the location of the median within this q1−α- qα range.  If the median is the mid-point of this 

range, then 	= 	� , �� = 0,	and the 3-term metalog reduces to a symmetric logistic distribution.  If the 

median is closer to �α then	^ < 	� , �� is positive and the distribution is right-skewed accordingly.  If the 

median is closer to �	
α, then �� is negative and the distribution is left-skewed.   

 

There is a feasibility limit as to how much skewness and kurtosis can be represented with an SPT-

parameterized metalog.  Since there is a one-to-one correspondence between aaaa and 2 in Proposition 1, this 

limit is just the “3-term-metalog” line segment shown in Figure 4, and the range of feasible shapes for SPT 

metalogs is as shown in Figure 5.  Intuitively, the 3-term metalog, whether SPT-parameterized or more 

generally, can represent any shape from symmetric to roughly the skewness of the exponential 

distribution43.  Quantitatively, this limit is determined in closed form for the SPT metalog by the following 

proposition. 

 

Proposition 2 (SPT unbounded metalog feasibility):  Any given SPT 2 = ��α,	�,.-,	�	
α� is a feasible 

parameterization of the metalog distribution if and only if 														�α < 	^ < 	1 − �α,				where	^ = ��.g
�α�1−α
�α 	and	�α = 	� �1 − 1.66711 �	�− α��             (20) 

For 10-50-90 quantiles (α = 0.1), a close approximation to this expression is  																j 		 ≤ 	^ ≤ 	 -j                                                                                                                              (21) 

Proof:  For n=3, the feasibility condition (5) reduces to 														 )*�	�	
�� 	+	�� + �
,.-��	
��+ 	ln � �	
��.	 > 0              for all �	 ∈ �0, 1�                                (22) 

Consider three cases: �	 ∈ �0, 0.5�, � = 0.5,	and	�	 ∈ �0.5, 1.0�. The feasibility condition is satisfied if and 

only if it is satisfied for all three cases. For � = 0.5, the second case, (22) reduces to �� > 0, which is 

obviously true by (18) since by definition qα < q1-α and 0 < α < 0.5. Given �� > 0,	then, for the first case, 

(22) can be expressed as 														 �������� < 1	for	all	�	 ∈ �0, 0.5�,				where	���� = − V� − 0.5 + ��1 − ��78 B �1 − �CW
						 
                                                
43 Note that in Figure 4 the exponential distribution with (β1,β2) = (4.0, 9.0) is very close to the end of the 3-term 

metalog line segment (4.3, 8.6). So conceptually we can use the exponential distribution as close proxy for the 3-term 

metalog skewness limit. 
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Since ���� > 0 everywhere in this interval, the feasibility condition for this case becomes  

 																		)f)* < �,,                               where  �, = min�	∈�,,,.-� ���� = 1.66711 

 

Similarly, the feasibility condition for the third case is       

 																	)f)* > �	,                               where  �	 = max�	∈�	,.-,	.,����� = −1.66711 = −�, 

                                                        

Thus, (20) is satisfied if and only if −�, < )f)* < �,.  Substituting (18) and (19) for 	�� and 	�� in this 

expression, defining �α = 	� �1 − 1.66711 �	�− α��, and simplifying yields (20).  Applying (20) for α	=	0.1 

yields 0.166578 ≤ ^ ≤ 0.833442, of which (21) is a close approximation. � 

 

The importance of Proposition 2 is that the feasibility of the SPT xxxx = ��α,	�,.-,	�	
α� can readily be checked 

prior to any further calculations.  If (20) or (21) is satisfied, then xxxx				is feasible, as it will always be over the 

range of shapes shown in Figure 5.  If xxxx				is	not	feasible then adding one or more data points (n = m	≥ 4 ) 

would provide greater flexibility as shown in Figure 4. 

  

Proposition 3 (SPT semi-bounded metalog):  Given that ln�4 − ]s� is metalog-distributed and given a 

feasible SPT xxxx = (qα, q-, , q1-α) 	with	known	lower	bound	]7, the log metalog constants aaaa	=	��	, ��, ��� can 

be expressed directly as																			�	 = 	ln	�γ
0.5
�																																																									�� =	 	� �ln	�	
αα ��
	 ln Vγ1-α

γα
W                                                                                         

														�� =	 V�1 − 2α� ln B1 − α

α
CW
	 ln +γ1-αγα	γ

0.5
� .																			 

where γ
α
= �α − ]7, 	γ0.5 = �0.5 − ]7, γ1-α = �1-α − ]7, and �α is as in (20).  	Moreover,	xxxx is feasible if and 

only if 													]s + γ
α
	
�α	γ1-α�α	  <	�0.5 < ]s + γ

α
�α	γ1-α1−�α	 

 

Proof:  For the log metalog, ln�4 − ]s� is metalog distributed. In Proposition 1, substitute ln�γ
α
�, ln�γ,.-�, 

and ln�γ1-α�, for �α , �0.5 , and �	
α	respectively. The above expressions for the log metalog constants 

follow from algebraic simplification.  In (20), substitute ln�γ
α
�, ln��0.5 − ]7�, and ln�γ1-α�, for �α , �0.5 , and �	
α	respectively.  The above expression for the log metalog feasibility condition follows from solving the 

resulting equation for �0.5. � 

 

The importance of Proposition 3 is that the log metalog constants and feasibility condition can be expressed 

directly in terms of the quantile assessments ��α,	�,.-,	�	
α� and	lower	bound	]7.  The feasible range of 

flexibility for the log metalog parameterized by an SPT is same as the “3-term log metalog” region in Figure 

6, which also extends beyond the plot indefinitely down and to the right.  Thus, the shape flexibility of an 
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SPT-parameterized log-metalog is inclusive of that of the SPT-parameterized metalog, but includes 

significant additional area as well. 

 

Proposition 4 (SPT bounded metalog):  Given that ln��
����
��	is metalog-distributed and given a feasible SPT xxxx 

= (qα, q-, , q1-α)	with known lower upper and bounds ]s 	and	]� ,	the logit metalog constants aaaa	=	��	, ��, ��� can be expressed directly as 															�	 = 	ln	�γ
0.5
�																																																									�� =	 	� �ln	�	
αα ��
	 ln Vγ1-α

γα
W                                                                                         

														�� =	 V�1 − 2α� ln B1 − α

α
CW
	 ln +γ1-αγα	γ

0.5
� .																																																		 

where γ
α
= �α
]7,]\−�α , 	γ0.5 = �0.5
]7,]\−�0.5 , γ1-α = �1-α
]7,]\−�1-α, and �α is as in (20). Moreover,				xxxx				is	feasible	if	and	only	if	�	]s + 	]�γα	
�α	γ1-α�α	  �1 + γ

α
	
�α	γ1-α�α	  
	 < �0.5 < �	]s + 	]�γα�α	γ1-α1−�α	 �1 + γ

α
�α	γ1-α1−�α	 
	 

 

Proof:  For the logit metalog, r = ln��
����
��	is metalog distributed.  In Proposition 1, substitute ln�γ
α
�, 

ln�γ-,�, and ln�γ1-α� for �α , �0.5 , and �	
α	respectively. The resulting equations are identical those in 

Proposition 3, so the logit metalog constants follow from the same algebraic simplification as in the proof of 

Proposition 3.  To prove the logit metalog feasibility condition, substitute ln�γ
α
�, ln��0.5
]7,]\−�0.5�, and ln�γ1-α� for �α , �0.5 , and �	
α	in (20).  The above logit metalog feasibility condition follows from solving the resulting 

expression for �0.5. � 

 

The importance of Proposition 4 is that the logit metalog constants and feasibility condition can be 

expressed directly in terms of the quantile assessments (qα,q0.5, q1−α) and lower and upper bounds ]s 	and	]� .  The feasible range of flexibility for the SPT-parameterized logit metalog is same as the “3-term logit 

metalog” region in Figure 7, which also extends beyond the plot indefinitely down and to the right.  

Comparing the feasible “3-term” ranges in Figures 4, 6, and 7, it is apparent that the shape flexibility of the 

SPT-parameterized logit metalog is far greater than that of the SPT-parameterized metalog and log metalog 

distributions. 

 

 Bidding decision example 

 

As one illustration of the value of SPT-parameterization of the metalog family of distributions, we offer an 

example of an actual decision analysis in which a wrong decision would have been made if the decision-

makers had relied on a commonly-used 3-branch discrete representation of continuous uncertainties 

instead of a metalog-system continuous representation. 

 

The decision was how much to bid for a portfolio of 259 troubled real-estate assets, which a financial 

institution had offered for sale via public auction.  These assets were of different geographies, sizes, and 
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types including single-family, multi-family, commercial, and land.  To varying degrees, the value of each 

asset involved considerable uncertainty and complexity concerning current and future real estate values, 

occupancy and leases, potential tenant negotiations, local regulations, and, in some cases, bankruptcy or 

other litigation.   

 

To help determine how much to bid for the portfolio and how one might monetize its various assets, a 

potential bidder wished to see a probability distribution over the value of the portfolio, which would be the 

sum of the values of the 259 individual assets.  So he engaged a team of experts to assess the value of each 

asset.  Their assignment included visiting each property, discussing comparables with local real estate 

agents and other knowledgeable parties, and undertaking independent research concerning any issues that 

would affect that asset’s current or future value.  As an overall summary of their conclusions, the potential 

bidder requested a probabilistic range of low, medium, and high scenarios for each asset.    For each 

scenario, the team assessed a projected cash flow over time and translated this cash flow into a net present 

value (NPV).  The low scenario was defined as the NPV such that, from the experts’ perspective, there was a 

10% chance that the ultimate realized NPV would be lower than this amount.  The high NPV was defined 

such that there was a 90% chance that the ultimate realized NPV would be lower than this amount and a 

10% chance that it would exceed it.  The median scenario was defined such is it was equally likely that the 

actual realized NPV would be higher or lower than this amount.  The expert’s analyses and assessments 

resulted in the range of values for each asset as shown in Table 9. 

 

Table 9.  Range of Uncertainty in Asset Value ($ ‘000’s) 

 

 

It was apparent from this data that some assets were worth far more than others.  Some asset distributions 

were narrow while others were wide.  Some asset distributions were symmetric, while others were skewed-

left and still others were skewed-right.  In addition, while some of the asset-level uncertainty was 

probabilistically independent of (irrelevant to44) that of other assets, the team judged that there was a 

degree of positive correlation among these assets due to their common dependence on the future 

economy and, in particular, on the future health of global and local real estate markets. 

 

                                                
44 Howard and Abbas (2015). 

10% 50% 90%

Asset probability that realized value is less than …

1 18,150$             21,133$             22,625$         

2 10,465$             11,362$             12,408$         

3 15,781$             16,908$             18,260$         

4 4,234$               4,422$               4,610$           

5 2,629$               2,979$               3,295$           

6 13,945$             14,875$             16,176$         
. . . .
. . . .
. . . .

259 3,500$               4,000$               4,500$           

Total 185,348$           
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To calculate a probability distribution over the value of the portfolio, the team used a modified form of 

Monte Carlo simulation in which they had induced what they believed was an appropriate level of positive 

correlation across assets.  For many of the assets, the team judged the correlation coefficient with the 

market to be about 80%.  For other assets, especially those in litigation, the team believed the correlation 

with market to be negligible. The value of the portfolio for each simulation trial was the sum of the 

(appropriately-correlated-with-market) simulated values for each asset for that trial.  

 

When performing the simulation, the team initially performed a discrete simulation -- using only the 

discrete values in Table 9 for each asset.  They followed a commonly-used decision-analysis approach of 

assigning probabilities of 30%, 40% and 30% respectively to the low, median, and high discrete scenarios for 

each asset (see Bickel, Lake, and Lehman, 2011) and summing the results across assets for each simulation 

trial.  Doing this for 1,000 simulation trials resulted in the CDF data labeled “Discrete Simulation Data” in 

Figure 12. To gain further insight into this distribution, they calculated the corresponding log metalog 

distribution �-  parameterized by this data and plotted the results.  These results are labeled “Discrete 

Simulation Metalog” in Figures 12 and 13. 

 

Considering Figure 13, the team felt that the discrete-simulation tails were too narrow – even though this 

simulation had taken correlation into account. While the median portfolio value of about $185,000,000 

seemed to make sense, the near-zero probability that realized portfolio value would be less than 

$170,000,000 did not.  They felt based on their experience that the low end of the distribution should be 

lower.  Similarly, they felt that the high end should be higher. 

 

The team then ran the same simulation using metalog (continuous) representations of the data in Table 9. 

Using the SPT assessments in Table 9, the team parameterized the 3-term metalog accordingly for each 

asset. Figure 14 shows the result of this calculation for the Asset 1 in Table 9.  When reviewing such asset-

level distributions prior to simulation, they noted that the 10-50-90 quantiles for each distribution 

corresponded exactly to the 10-50-90 value assessments in Table 9, and that these distributions appeared 

to have appropriate right- or left-skewness.  They further noted that the low, median and high values 

appeared reasonable.  Intuitively, they felt these asset-level continuous distributions were a more accurate 

representation of asset-level uncertainty than the three discrete scenarios. 

 

They further observed that none of the 259 assessed 10-50-90 ranges violated feasibility conditions in 

Proposition 2.  Rerunning the (similarly correlated) portfolio simulation based on continuous (metalog-

represented) asset-level uncertainties yielded the “Continuous Simulation Data” shown in Figure 12, and 

the corresponding “Continuous Simulation Metalog” in Figures 12 and 13.   The continuous simulation 

showed wider tails and a narrower mid-range.  The lower end of the distribution visibly extended below 

$160,000,000, which made sense to the team.  
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Similarly, the high end now extending above $210,000,000 also made sense.  After further reflection and 

analysis, the team concluded that the continuous simulation was a more accurate and authentic 

representation of the uncertainty in portfolio value than the discrete simulation.  The discrete simulation, 

they reasoned, arbitrarily cut off the tails of the asset-level distributions prior to simulation (no values 

outside the low-high range were considered), so it was not surprising that the sum over 259 assets had 

resulted in artificially short tails as well.   

 

Figure 12. Cumulative Distribution Functions Over Portfolio Value 

 

 

 

 

Based on clarity and confidence gained through such analysis, the decision-makers chose to submit a bid for 

this portfolio of assets and subsequently won the auction. Had they relied only on the discrete 

representation in Figures 12 and 13, they would have overbid. The portfolio value ultimately realized 

several years later was about $180,000,000 -- just slightly less than their prior median.   

 

To date, professional decision analysts have used metalog distributions to represent thousands of 

uncertainties over dozens of applications across many fields, including life-sciences asset valuations, loan 

asset valuations, real-estate asset valuations, environmental studies of fish migration, river stream flows, 

and a wide range of portfolios of such items.   Like the team valuing the portfolio of troubled real-estate 

assets in the above example, such teams have generally concluded that treating continuous uncertainties as 

continuous and discrete uncertainties as discrete yields more authentic probabilistic results than 

discretizing all uncertainties from the outset.  The metalog system enables practitioners to do this easily 

and conveniently. 
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Figure 13.  Probability Density Functions Over Portfolio Value 

 

 

 

Figure 14.  Metalog Distribution for Asset 1 

 

 

 

 

6.3 Distribution Selection within Metalog System 

  

Given input data (2, 3� that one wishes to represent with a continuous probability distribution, which 

metalog should one select and how many terms should one use for that selection?  As with any distribution 

selection that is not purely Type-1 driven, this is ultimately a matter of judgement. We now offer several 

guidelines and tools to help aid this judgement. 

 

With respect to choosing among unbounded, semi-bounded, and bounded distributions, the traditional 

basis of choice for the Pearson and Johnson systems is to match 3rd and 4th central moments of the data 

0.0000000

0.0000100

0.0000200

0.0000300

0.0000400

0.0000500

0.0000600

150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000

Portfolio Value ($ '000s)

Discrete Simulation Metalog (n=5) Continuous Simulation Metalog (n=5)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5,000 10,000 15,000 20,000 25,000 30,000

Asset CDF

Data Metalog (n=3)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0 5,000 10,000 15,000 20,000 25,000 30,000

Asset PDF

Metalog (n=3)



 

 
Page46 

 

  

with a corresponding distribution from Figure 1.  However, given a moments-based selection within the 

Pearson and Johnson systems, this approach has the disadvantage that it offers no choice of boundedness. 

In contrast, as shown in Figures 4-7, the metalog family offers a wide range of flexibility for each of its 

unbounded, semi-bounded, and bounded options.  So as a starting point per Table 1, we suggest selecting 

the metalog, log metalog, or logit metalog according to whether the distribution of interest is naturally 

unbounded, semi-bounded, or bounded. 

 

How many terms to use depends significantly on purpose and context.  For example, in decision analysis 

applications with three assessed data points (m=3), it is natural to use three terms (n=3).  In this case, for 

any feasible data, the metalog CDF will pass through these data exactly as illustrated in Figure 14. More 

generally, the metalog distributions will pass through the data exactly whenever n=m and the data is 

feasible, so it makes sense to start with n=m when this result is desired. 

 

In the case of tens or even thousands of data points (e.g. of empirical or simulation data), an exact fit is 

generally neither desired nor practical.  In such cases, one may wish to use: A) relatively few terms (e.g. 

n=3-6) if a smooth representation is desired, or B) a larger number of terms (e.g. n=7-15) if one is engaged 

in data or distribution research, or C) the n that maximizes some closeness-of-fit criterion such as K-S 

distance. In the case of B) or C), one must take care not to overfit45 the data – as is potentially possible with 

any linear least squares application with variable number of terms.   

 

To aid such considerations, we have found the “metalog panel” to be a useful tool.  As shown in Figures 15 

and 16, the metalog panel arrays density functions for a range of n for a given set of data parameters (2,3�.  
 

Figure 15 shows the array of log-metalog density functions for n=2 to n=16 that correspond to fish biology 

data in Figure 10.  Figure 16 is a similar representation of the for the hydrology data in Figure 11.  In both 

Figures 15 and 16, it is evident how the log metalog increasingly molds itself to the shape of the data and 

eventually stabilizes its shape as n increases. Blank cells in these figures correspond to the data being 

infeasible for that choice of n.   

 

From a Bayesian perspective, the choice of n ultimately corresponds to a declaration of “yes, that’s what I 

mean” by a decision-maker or expert.  That is, the resulting distribution authentically represents his beliefs. 

 

 

 

 

 

 

 

                                                
45 Among others, Hawkins (2004) and Draper and Smith (1998) provide perspectives on overfitting and rules of thumb 

for dealing with it. 
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Figure 15.  Metalog Panel for Fish Biology Data 

 

 

 

  

Figure 16.  Metalog Panel for Hydrology Data 

 

 

7.  Conclusions 

 

This paper introduces the metalog distributions, a system of continuous univariate probability distributions 

designed for flexibility, simplicity, and ease/speed of use in practice.  While the metalog system offers 

unbounded, semi-bounded, and bounded distributions that broadly achieve these goals and that compare 

favorably with previous systems, it also suggests several areas for further research. 
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First, one can envision various improvements to the metalog system.  These include for example 

characterizing the full range of metalog-system flexibility, including for five or more terms in the β1- β2 

plane and for the ability to match fifth and higher-order central moments. In addition, it might be useful to 

extend to four or more terms an expression of the constants and feasibility conditions that we developed 

for up to three terms Section 6.2. 

 

Second, as suggested in Section 3.2, other “meta” distributions can be developed by applying the 

methodology of Section 3.1 to other base distributions such as the normal, Gumbel, and exponential.  

While this research appears to be straight-forward, it has not been done yet, and it may well yield new 

systems of quantile-parameterized distributions that have certain advantages relative to the metalog.   

 

Third and more broadly, there is a need for new distribution systems that may result from a different 

combination of choices or the addition of new choices to Table 1.  These might include quantile- 

parameterized systems without feasibility conditions, with additional flexibility for given levels of feasibility, 

or with flexibility to represent infinite-moments distributions like the Cauchy. 

 

Future research contributions notwithstanding, we believe the metalog system as presented in this paper is 

ready for use in practice – for any situation in which CDF data is known and a flexible, simple, and easy-to-

use continuous probability distribution is needed to represent that data. 
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