
distributions. So began the search for 
continuous probability distributions with 
flexible shapes and bounds. The metalog 
is one such distribution. It has a single 
set of simple closed-form equations and 
parameter estimation with ordinary least 
squares. Moreover, the metalog is ideal 
for simulation because uniform random 
samples are converted directly into samples 
of the variable of interest x by the metalog’s 
closed-form quantile function. See the box 
on page 33 for technical details.

A general-purpose distribution
Traditional distributions like the normal, 
lognormal, exponential, and beta each 
have their special purposes. For example, 
by the central limit theorem, the normal 
distribution is the limiting shape of a sum 
of identically distributed random variables. 
Similarly, the exponential distribution can be 
derived as the probability distribution of the 
time between events in a Poisson process (a 
process in which events occur continuously 
and independently at a constant average 
rate). In contrast, the metalog is a general-
purpose, more universal distribution that, 
as shown by blue curves in Figure 2, can 
closely approximate all these shapes (yellow 
curves) and that can take on virtually any 
other shape as well. The metalog is also 
universal in terms of its boundedness. As 
explained in the box (page 33), metalogs can 
be unbounded, semi-bounded, or bounded, 
where numerical upper and/or lower bounds, 
if any, may be specified as appropriate. For 
example, since the time between events 
in Poisson process cannot be negative, 
both the exponential distribution and the 
metalog approximating it in Figure 2(c) have 
a lower bound of zero. And since the normal 

flexibility to exactly run through all three 
points, which is desirable to authentically 
represent the expert’s view. The metalog 
distribution was originally designed to 
overcome this limitation. Figure 1 shows one 
such metalog distribution, which, within its 
feasibility range, will pass exactly through 
any three points.

A brief history lesson
One might think of the history of probability 
distributions as a progression of individual 
developments towards greater shape 
and bounds flexibility for fitting to data. 
The normal distribution (1756) laid the 
foundation for much of the development 
of classical statistics. In contrast, Bayes’ 
theorem (1763) was the basis for state-
of-information, belief-based probability 
representations. Because belief-based 
probabilities can take on any shape and 
may have natural bounds, probability 
distributions flexible enough to 
accommodate both were needed. Moreover, 
many empirical and experimental data sets 
exhibited shapes that could not be well 
matched by the normal or other continuous 
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The metalog distribution 
(metalogdistributions.com) is a new 
continuous probability distribution 
that has nearly universal shape and 

bounds flexibility. Over a wide range, it can 
mimic virtually all traditional distributions 
and fit data more accurately. Developed 
by Tom Keelin in 2016 as a generalisation 
of the logistic distribution, “metalog” 
is short for “meta-logistic”.1 Software 
resources for metalog distributions are 
available in R, Python, Excel, and other tools 
(metalogdistributions.com/software.html).

Fitting distributions to 
elicited data
Let us take a simple example. Decision 
analysts commonly elicit three quantiles 
(e.g., 0.1, 0.5, and 0.9) from an expert and 
then fit a continuous probability distribution 
to these points. Perhaps the quantity 
being estimated represents the time to 
complete a task, or the cost of a particular 
component in a system. A problem faced by 
decision analysts is that classical probability 
distributions, even the very flexible beta 
distribution, typically lack sufficient shape 

Introducing the 
metalog distributions
Scott Nestler and Tom Keelin provide an overview of a new family of distributions, originally developed for 
the decision analysis field, that may have virtually unlimited applicability in any field

FIGURE 1: Bounded metalog parameterised with 
cumulative distribution function (CDF) data (20,0.1), 
(30,0.5), (50,0.9) and bounds (0,0) and (100,1).

The metalog distribution 
can be used to model 
data from many 
different domains or 
applications, whether 
it is an elicited, simulated, 
or empirical source
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distribution in Figure 2(a) is unbounded, so is 
the metalog that approximates it.

Wide range of applications
The metalog distribution can be used to 
model data from many different domains 
or applications, whether it is an elicited, 
simulated, or empirical source. Here are 
examples from various areas to date: 
astronomy (risk of asteroid impacts), 
cybersecurity (risk of incidents), eliciting and 
combining expert opinions (fertility rates, 
Statistics Canada), hydrology (probability of 
river gauge heights), portfolio management 
(value of new products), and simulation 
(for both input and output distributions). 
One application of particular interest 
to statisticians is enabling closed-form 
representations of known distributions 
for which the CDF has no closed-form 
expression, such as the sum of independent 
identically distributed lognormal 
distributions.2 

In fish biology, the metalog has been used 
to represent the empirical distribution of 
steelhead trout weights shown in Figure 3.1 
While a lognormal distribution, which might 
typically be used by fish biologists to fit such 
data, provides a reasonable fit, the 10-term 
metalog provides a more nuanced view. The 
population of steelhead in the river consists 
of fish returning upriver to spawn after having 
lived in salt water. Those fish returning from 
salt water to spawn for the first time are 
called “1-salt” fish. After spawning, these fish 
typically return to salt water, gain additional 
weight in rich ocean feeding grounds, and 
then come back up the river some years 
later to spawn for a second time, becoming 
“2-salt” fish. A few very large steelhead are 
“3-salt” or “4‑salt” fish.

Both the relative population sizes and 
weight differences between 1-salt and 
2-salt steelhead are unsolved research 
questions in fish biology. Could the two 

modes in the more nuanced metalog 
distribution correspond to 1-salt and 
2-salt fish, respectively? If this bimodality 
were to be verified by further research (by 
methods such as training and test data 
sets, expanded time periods, alternative 
time-period segmentations, analysis of such 
data from other rivers, or various statistical 
methods), it would shed significant light on 
these unsolved research questions. Our (less 
ambitious) purpose here is simply to illustrate 
the use of metalogs as a data exploration and 
visualisation tool that may provide insights 
worthy of further exploration. 

Note that this insight would have been 
missed if the lognormal distribution (or a 
similar unimodal distribution) had been 
assumed a priori. Moreover, the histogram 
shape for this data set depends on arbitrary 
bin-width and bin-location settings. While it 

shows two modes in Figure 3, it is unimodal 
under other reasonable settings. Thus, by 
telling a more nuanced story about the data 
than less flexible and less accurate alternatives, 
metalog distributions may open new avenues 
for data research and exploration.

Guidelines for selecting the 
number of metalog terms
Keep in mind that metalogs provide the 
flexibility to choose any number of terms 
and that using more terms means more 
shape flexibility. Selecting the number 
of terms involves a trade-off between 
parsimony (fewer terms) and fit accuracy 
(more terms). Like any other linear 
regression curve-fitting, it is possible to 
overfit metalogs by using too many terms or 
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FIGURE 2 The metalog distribution (blue curves) as a close approximation to traditional distributions (yellow 
curves): (a) normal (μ = 0, σ = 1); (b) lognormal (μ = 0, σ = 0.5); (c) exponential (λ = 0.5); (d) beta (α = 0.8, β = 0.9). 
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FIGURE 3 Empirical distribution of the weight of 3,474 steelhead trout caught and released on the 
Babine River, British Columbia, during 2006–2010. Overlaid on the data histogram (light blue bars) are the 
best‑fit lognormal distribution (green dots) and the 10-term metalog distribution (blue curve) fitted with 
linear regression. The 10-term metalog captures the bimodality inherent in the data whereas the lognormal 
does not.  

By telling a more nuanced 
story about the data than 
less flexible and less 
accurate alternatives, 
metalog distributions may 
open new avenues for data 
research and exploration
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underfit by using too few. Generally, it is best 
to use the smallest number of terms that 
appropriately fit your data. While three terms 
is sufficient for many applications, more can 
be useful. For example, we used 10-term 
metalogs to closely match the traditional 
distributions in Figure 2 and to capture the 
bimodality that may be evident from context 
in Figure 3. 

You may also opt to use goodness-of-
fit criteria such as the Akaike information 
criterion (AIC) or Bayesian information 
criterion (BIC) to identify the optimal number 
of terms, just as you would with traditional 
distributions. For example, when applied 
to the fish weight data in Figure 3, the AIC 

ranking of metalog distributions from 2 
to 16 terms along with a wide range of 
classical distributions identifies the 11-term 
metalog as the best fit to this data. A similar 
BIC ranking identifies the 10-term metalog 
(shown in Figure 3) as the best fit.

When to use and not use metalogs
If you have data (empirical, elicited, or 
simulated) and wish to find a continuous 
distribution to accurately represent that 
data, you may be best off starting with a 
metalog. The reason is that the metalog will 
fit almost any data set more accurately than 
traditional distributions and more easily 
(with linear regression; see box above). 

The key exception is if you know (or are 
willing to assume), a priori, that your data 
was generated from a special-purpose 
distribution, in which case you might simply 
opt to use the latter. 

There are some extreme data sets that 
even metalogs with up to 16 terms do not fit 
accurately. For example, for data sets from 
mixed discrete–continuous distributions 
or multimodal distributions with zero 
probability density between modes, such 
higher-order metalogs may be infeasible. For 
data sets with extremely fat tails (e.g., from a 
Cauchy distribution), an impractically large 
number of terms may be required to fit the 
tails accurately.

A distribution for all data
Analysts will often find themselves looking 
at a histogram and descriptive statistics for 
a data set and asking questions like “What 
kind of distribution should I fit to this?”, 
“Does it look normal?”, and “Should I use 
maximum likelihood estimation to determine 
the parameters?” It is not unusual to try a 
few different options and still feel unsatisfied 
with the fit of the distribution. Rather than 
this “hunt and peck” approach to choosing a 
distribution, we would encourage analysts to 
give metalogs a try. 
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Technical details and notable properties
The metalog distribution is a generalisation of the logistic distribution. The logistic 
quantile function is given by

x = Q(y) = μ + s ln ( y
1 – y)

where 0 < y < 1 is cumulative probability and μ and s are parameters that control location 
and scale, respectively. The metalog quantile function is defined by substituting power 
series expansions in y for these parameters: 

μ = a1 + a4(y – 0.5) + a5(y – 0.5)2 + …

and 

s = a2 + a3(y – 0.5) + a6(y – 0.5)2 + …,

where the a-coefficients are constants that determine its location, scale, and shape.1

Like a Taylor series, the metalog quantile function may have any number of terms k. 
Each additional term adds shape flexibility: a k-term metalog has k – 2 shape 
parameters. By increasing the number of terms, the metalog has been shown to have 
virtually unlimited shape flexibility.3

Since the metalog quantile function is differentiable, it has a simple closed-form 
probability density function (PDF), the shape of which also depends on the 
a-coefficients.1 To be a feasible probability distribution, the a-coefficients must be such 
that this PDF is positive for all y. 

Note that by design the metalog quantile function is linear in the a-coefficients. By 
implication, these coefficients can be determined from data in closed form by linear 
regression.1 Moreover, Bayesian linear regression4 can be used to update, in light of new 
data, a metalog-distributed long-run frequency distribution over a variable of interest 
according to Bayes’ theorem in closed form.3

Simple transformations of the metalog quantile function yield semi-bounded and 
bounded metalog distributions,1 where the user can set upper and/or lower bounds as 
appropriate. Beyond honouring such user-specified bounds, these metalog transforms 
retain the properties of virtually unlimited shape flexibility and determination of 
a-coefficients by linear regression.1

The metalog will fit 
almost any data set 
more accurately than 
traditional distributions 
and more easily
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